203. Thermische (E), (Z)-Isomerisierungen bei substituierten Propenylbenzolen¹)

von Rudolf Wehrli, Heinz Heimgartner und Hans Schmid

Organisch-chemisches Institut der Universität Zürich, Rämistr. 76, CH-8001 Zürich

und Hans-Jürgen Hansen

Institut de chimie organique de l'Université, Pérolles, CH-1705 Fribourg

(15.VI.77)

Thermal (E), (Z)-Isomerizations of Substituted Propenylbenzenes

Summary

The thermal isomerizations of (E)- and (Z)-3,5-dimethyl-2-(1'-propenyl)phenol ((E)- and (Z)-3), (E)- and (Z)-N-methyl-2-(1'-propenyl)anilin ((E)- and (Z)-4), (E)and (Z)-3,5-dimethyl-2-(1'-propenyl)anilin ((E)- and (Z)-5), (E)- and (Z)-2-(1'propenyl)mesitylene ((E)- and (Z)-6), (E)- and (Z)-2-(1'-butenyl)mesitylene ((E)and (Z)-7), (E)- and (Z)-2-(1'-propenyl)toluene ((E)- and (Z)-8), (E)- and (Z)-4-(1'-propenyl)toluene ((E)- and (Z)-9) as well as of (E)- and (Z)-2-(2'-butenyl)mesitylene ((E)- and (Z)-10) in decane solution were studied (Scheme 2). Whereas the isomerization of the 2-propenylphenols (E)- and (Z)-3 occurs already between 130 and 150° (cf. Table 1), the isomerization of the 2-propenylanilins 4 and 5 takes place only at temperatures between 220 and 250° (cf. Tables 2 and 3). The activation values and the experiments using N-deuterated 4 (cf. Scheme 4) show that 2propenylphenols and -anilins isomerize via sigmatropic [1,5]-hydrogen-shifts. For the isomerization of the methyl-substituted propenylbenzenes temperatures $> 360^{\circ}$ are required (cf. Tables 4 and 5). The activation values of the isomerization of (E)and (Z)-6 and (E)- and (Z)-9 are in accord with those of other (E), (Z)-isomerizations which occur via vibrationally excited singlet biradicals (cf. Table 7). Nevertheless, thermal isomerization of 2'-d-(Z)-8 (cf. Scheme 6) demonstrates that during the reaction deuterium is partially transfered into the ortho-methyl group, *i.e.* 1,5-hydrogen-shifts must have participated in isomerization of (E)- and (Z)-8 (cf. Scheme 8). Under the equilibrium conditions 2,4,6-trimethylindan (17) is formed slowly at 368° from (E)- and (Z)-6, very probably via a radical 1,4hydrogen-shift (cf. Scheme 9). In a similar way 2-ethyl-4,6-dimethylindan (19; cf. Table 6) arises from (E)- and (Z)-7. Thermolysis of (E)- and (Z)-10 in decane solution at 367° results in almost no (E), (Z)-isomerization. At prolonged heating **19** and 2,5,7-trimethyl-1,2,3,4-tetrahydronaphthalene (**20**) are formed; these two products arise very likely from an intermolecular radical process (cf. Scheme 10).

¹⁾ Teil der Dissertation von R. W., Universität Zürich 1977.

1. Einleitung. – Wie in der voranstehenden Arbeit [1] gezeigt wurde, erfolgt die schon bei *ca.* 150° verlaufende (E), (Z)-Isomerisierung von 2-Propenylphenolen $(\mathbf{1}, X = O; Schema 1)$ über aromatische sigmatropische [1, 5s]-Wasserstoffverschiebungen. In diesem Zusammenhang interessierte die Frage, ob thermische (E), (Z)-Isomerisierungen von 2-Propenylanilinen $(\mathbf{1}, X = NH)$ und von 2-Propenyltoluolen $(\mathbf{1}, X = CH_2)$ ebenfalls via sigmatropische [1, 5s]-Wasserstoffverschiebungen verlaufen (Schema 1).

Wird die mittlere Bindungsenergie (BE.) der H,X- und C,X-Bindung in 1 mit der BE. der C,X-Doppelbindungen im Zwischenprodukt 2 verglichen, so ergibt sich ein $\triangle BE$. von -23 ± 5 kcal/mol für X=O, von -27 ± 8 kcal/mol für X=NH und von -40 ± 6 kcal/mol für X=CH₂²), d.h. die durch die Desaromatisierung von 1 bestimmten Isomerisierungsgeschwindigkeiten sollten bei Vernachlässigung von Konjugationseffekten in der Reihenfolge X=O,NH, CH₂ abnehmen.

Für die Untersuchung wurden die reinen (E)- und (Z)-Isomeren des Propenylphenols 3, der Propenylaniline 4-5 sowie der Propenyl- bzw. (1'-Butenyl)mesitylene 6-7 und -toluole 8-9 eingesetzt (*Schema 2*). Zu Vergleichszwecken wurde noch das thermische Verhalten des (E)- und (Z)-Isomeren von 2-(2'-Butenyl)mesitylen (10) studiert.

2. Herstellung der (E)- und (Z)-Propenylverbindungen. – (E)- und (Z)-3,5-Dimethyl-2-(1'-propenyl)phenol ((E)- und (Z)-3) wurden durch Isomerisierung von 2-Allyl-3,5-dimethylphenol mit methanolischer Kaliumhydroxidlösung bei 110° als

²) Es wurde der Mittelwert aller unter [2] angegebenen BE. verwendet.

(5:1)-Gemisch gewonnen (vgl. [3]). Die beiden Isomeren wurden durch Kristallisation und Chromatographie rein erhalten ((*E*)-3: Smp. 67,5-68°; (*Z*)-3: Smp. $51-52^{\circ}$).

Durch Zinkchlorid-katalysierte Umlagerung von N-Allyl-N-methylanilin (11) [4] bzw. N-Allyl-3,5-dimethylanilin (12) wurden die entsprechenden 2-Allylaniline 13 und 14 hergestellt, die durch Erhitzen mit methanolischer Kaliumhydroxidlösung auf 110° (vgl. [4]) in ein (3:1)- bzw. (2:1)-Gemisch von (E)- und (Z)-4 bzw. von (E)und (Z)-5 übergeführt wurden (Schema 3). Die Auftrennung in die reinen Isomeren erfolgte durch präparative Gas-Chromatographie.

Die am Benzolring methylsubstituierten (E)- und (Z)-(1'-Propenyl)- bzw. (1'-Butenyl)benzole **6-9** wurden durch *Wittig*-Reaktion der entsprechenden Benzaldehyde mit Äthyliden- bzw. Propyliden-triphenylphosphoran (vgl. [5] und dort zit. Lit.) hergestellt. Für die Synthese der deuterierten Verbindungen 2'-d-**8** bzw. -**9** wurde dabei von 1-Deuterioäthyliden-triphenylphosphoran ausgegangen. (E)- und (Z)-2-(2'-Butenyl)mesitylen ((E)- und (Z)-10) wurden aus Mesitylmagnesiumbromid und Benzoesäure-(a-methylallyl)ester bereitet (vgl. [6]). Die (E), (Z)-Gemische wurden wiederum durch präparative Gas-Chromatographie aufgetrennt.

Die (*E*)- bzw. (*Z*)-Konfiguration der Propenylverbindungen liess sich NMR.-spektroskopisch anhand der J(1',2')-Kopplung festlegen (vgl. exper. Teil). Alle (*E*)-Isomeren zeigen ausserdem in: IR.-Spektrum eine starke Absorption im Bereich von 961–982 cm⁻¹, charakteristisch für die «Aus-der Ebene»-Schwingung der *trans*-ständigen Wasserstoffatome an der Doppelbindung. Die (*Z*)-Isomerebesitzen eine ausgeprägte Bande im Bereich von 690–735 cm⁻¹, die der «Aus-der-Ebene»-Schwinguder *cis*-ständigen Wasserstoffatome zugeschrieben wird (vgl. [7]).

Überdies weisen (*E*)- und (*Z*)-3 im IR.-Spektrum die Bande der O,H-Streckschwingung für die intramolekular chelierte OH-Gruppe (Wasserstoffbrücke mit der C(1'), C(2')-Doppelbindung) au In CCl₄ ($c=10^{-3}$ M, 20°) zeigt (*E*)-3 scharfe Banden bei 3607 (freies OH) und 3540 cm⁻¹ (cheliertes OH) im Intensitätsverhältnis von 1:4,0. Für (*Z*)-3 liegen die entsprechenden Banden bei 3611 und 3540 cm⁻¹ mit einem Intensitätsverhältnis von 1:6,7. (Z)-3 weist somit eine etwas stärkere H-Brücke auf als (E)- 3^3), was vermutlich auf sterische Effekte (der (Z)-konfigurierte Propenylrest wird durch die 3-ständige Methylgruppe stärker in eine syn-Lage zur OH-Gruppe gedreht als der (E)-konfigurierte Rest) zurückzuführen ist.

Bei den (*E*)- und (*Z*)-konfigurierten 2-Propenylanilinen 4 und 5 lassen sich im IR.-Spektrum (CCl₄, $c = 10^{-3}$ M) im Bereich der N,H-Streckschwingungen keine Banden für intramolekular π -chelierte NH-Gruppen erkennen. Solche treten z.B. bei *N*-Benzylanilinen auf [11].

In den UV.-Spektren der (*E*)-Propenyl-Verbindungen zeigt das langwelligste Absorptionsmaximum im Vergleich zu den (*Z*)-Formen einen bathochromen und hyperchromen Effekt ($\Delta \lambda_{max} = 5-12$ nm; $\Delta c = 0-6000$).

3. Thermische (E), (Z)-Isomerisierungen. – Die Erhitzungen wurden im allgemeinen mit 0,05M Lösungen der Verbindungen in Decan in Pyrexbömbchen im Hochvakuum durchgeführt (Details siehe exper. Teil). Bei allen kinetischen Experimenten wurden Vergleichsversuche in Weichglasbömbchen (Blei-Pottasche-Glas) vorgenommen, da sich zeigte, dass die Gleichgewichtseinstellung zwischen Methylidencyclohexan und 1-Methylcyclohexen bei 360° in Decan in Pyrexbömbchen schon nach 1 Std. erreicht wurde (vgl. hierzu [12]). In den verwendeten Weichglasbömbchen trat unter den genannten Bedingungen keine Veränderung von Methylidencyclohexan ein. Es wurde festgestellt, dass die Geschwindigkeit der (E), (Z)-Isomerisierung des Phenols 3 und der Aniline 4 und 5 sowie des Mesitylens 6 praktisch nicht von der Glassorte der verwendeten Bömbchen abhängig war. Bei der Isomerisierung von (E)- und (Z)-4-(1'-Propenyl)toluol ((E)- und (Z)-9) wurde hingegen eine starke Beeinflussung beobachtet (siehe Kap. 3.3).

Die bei den (E), (Z)-Isomerisierungen der Propenylverbindungen von beiden Isomeren her ermittelten Gleichgewichtskonzentrationen, die Geschwindigkeitskonstanten 1. Ordnung und die daraus berechneten Aktivierungsgrössen sind in den folgenden Abschnitten in Tabellen zusammengestellt. Die gas-chromatographisch unter Verwendung von Standardsubstanzen bestimmten Produktbilanzen waren stets >95%. Alle Isomerisierungsgeschwindigkeiten waren unabhängig von der Konzentration der Reaktanden (geprüft an $5 \cdot 10^{-2}$ und $5 \cdot 10^{-3}$ M Lösungen).

3.1. 2-Propenyl-*phenole.* Bei der Propenylverbindung 3 erfolgte die thermische (E), (Z)-Isomerisierung schon im Temperaturbereich von 130–150°. Die erhaltenen Daten sind in *Tabelle 1* zusammengestellt. Die ΔH^{\neq} - und ΔS^{\neq} -Werte sind nur mit konzertierten H-Verschiebungen vereinbar (vgl. [1]).

3.2. 2-Propenyl-aniline. Die Resultate der Erhitzungen der Verbindungen 4 und 5 sind in den *Tabellen 2* und 3 angegeben. Um also die gleiche Isomerisierungsgeschwindigkeit wie beim Phenol 3 zu erhalten, ist für die Propenylaniline 4 und 5 eine um ca. 110° höhere Temperatur notwendig. Die gefundenen ΔH^{\neq} - und ΔS^{\neq} -Werte lassen sich wiederum nur mit konzertierten H-Verschiebungen erklären.

Dass diese neuartige thermische (E), (Z)-Isomerisierung der 2-Propenylaniline via intramolekulare Wasserstoffverschiebungen erfolgt, wird durch zwei weitere

^{) (}E)-2-(1'-Propenyl)phenol zeigt im IR.-Spektrum (CCl₄) die Bande der O,H-Streckschwingung für die freie OH-Gruppe bei 3612 und für die intramolekular π -chelierte OH-Gruppe bei 3553 cm⁻¹. In der (Z)-Verbindung werden eine Bande bei 3611 cm⁻¹ (freie OH-Gruppe) und zwei weitere Banden bei 3587 und 3547 cm⁻¹ (π -chelierte OH-Gruppe) gefunden [8] (vgl. auch [9] [10]). Die Aufspaltung der Bande für die intramolekular chelierte OH-Gruppe scheint auf Konformationseffekten zu beruhen [8].

Tabelle 1. Thermische (E),(Z)-Isomerisierung von 3,5-Dimethyl-2-(1'-propenyl)phenol (3) in Decan (c=0,051M)

Temp. (°)	(E)- 3 (Gl.) (%)	(Z)- 3 (Gl.) (%)	K(E/Z)	$\frac{k(E) \cdot 10^{5a})^{b}}{(s^{-1})}$	$\frac{k(Z) \cdot 10^{5a})^{b}}{(s^{-1})}$
130,0	56,1°) 57,8°)	43,9 42,2	1,32	$1,26 \pm 0,02$	$1,66 \pm 0,04$
140,0	57,0 57,5	43.0 42,5	$(-0,24)^{d}$	$2,\!86\pm0,\!04$	$3,\!83\pm0,\!05$
150,0	57,8 57,6	42,2 42,4	1,36	$5,89\pm0,08$	8,04±0,11
$\frac{\Delta H^{\neq}_{(40^{\circ}}}{\Delta S^{\neq}_{140^{\circ}}}$	(kcal/mol) (e.u.)			$25,4 \pm 0.5$ - 18,6 ± 0,7	$25,9 \pm 0,5$ - 16,7 ± 0,7

^a) Die Geschwindigkeitskonstanten wurden gemäss $(k(E) + k(Z)) \cdot t = \ln(([E_0] - [E_e])/([E] - [E_e]))$ oder der entsprechenden Beziehung für die (Z)-Form berechnet, wobei $k(E)/k(Z) = [Z_e]/[E_e]$; $[E_0]$ bzw. [E] = Konzentration der (E)-Form zur Zeit t = 0 bzw. t; $[E_e]$ und $[Z_e] = Gleichgewichtskonzen$ trationen. Die angegebenen Fehler stellen Standardabweichungen dar.

b) k-Werte bestimmt aus Experimenten mit (Z)-3.

c) 1. Zeile: Werte aus $(E) \rightarrow (Z)$; 2. Zeile: Werte aus $(Z) \rightarrow (E)$.

d) $\Delta G(E/Z)$ in kcal/mol.

Tabelle 2. Thermische (E),(Z)-Isomer	risierung	von	N-Meti	hyl-2-(1	'-proper	ıyl)anilin	(4) in	Decan

(c = 0,013M) (c = 0,013M) (E) - 4 (c = 0,013M) (c = 0,01

Temp. (°)	(E)-4(Gl.) (%)	(Z)-4(Gl.) (%)	K(E/Z)	$k(E) \cdot 10^{5a}$) (s ⁻¹)	$k(Z) \cdot 10^{5a}$ (s ⁻¹)
220,0	69,1 ^b) 68,9 ^b)	30,9 31.1	2,23	$0,36 \pm 0,01^{\circ})$	$0,80 \pm 0,02$
230,0	68,1 68,6	31,9 31,4	2,16 (-0,77) ^e)	$0,61 \pm 0,02^{d})$ $0,66 \pm 0,02^{c})$	$1,32 \pm 0,05$ $1,41 \pm 0,04$
240,0	67,2 67,0	32,8 33,0	2,04	$1,32 \pm 0,03^{\circ}$)	$2,73 \pm 0,05$
$\Delta H^{\neq}_{230^{\circ}} \Delta S^{\neq}_{230^{\circ}}$	(kcal/mol) (e.u.)			$31,8 \pm 2,7$ - 20,1 ± 1.2	29.9 ± 2.5 - 22.2 ± 1.1

^a) Vgl. Fussnote ^a) zu Tab. 1.

b) Vgl. Fussnote c) zu Tab. 1.

c) k-Werte bestimmt aus Experimenten mit (Z)-4.

d) k-Werte bestimmt aus Experimenten mit (E)-4.

e) $\Delta G(E/Z)$ in kcal/mol.

		H ₃ C (E)-5	$\frac{k(E)}{k(Z)} \xrightarrow{H_{3}C} (Z) = 5$	сн3	
ſemp. ĵ°)	(<i>E</i>)-5(Gl.) (%)	(Z)-5(Gl.) (%)	K(E/Z)	$k(E) \cdot 10^5$ (s ⁻¹)	$\frac{k(Z) \cdot 10^5}{(\mathrm{s}^{-1})}$
230,0	51,9 51.6	48,1 48,4	1,07	0,83±0,03	0,89±0,04
240,0	51,3 51,1	48,7 48,9	1,05 (-0,05)	1,41±0,07	$1,\!48\pm0.07$
250,0	51,0 50,5	49,0 49,5	1,03	$2,\!60\!\pm\!0,\!07$	$\dot{2},68\pm0,07$
1 <i>H</i> ≢ _{240°} 1S≢ _{40°}	(kcal/mol) (e.u.)			$28,7 \pm 1,6$ - 25,7 ± 0,7	$27,8 \pm 1,6$ -27,4 ± 0,7

Tabelle 3. Thermische (E),(Z)-Isomerisierung von 3,5-Dimethyl-2-(1'-propenyl)anilin (5) in Decan $(c = 0,051 \text{ M})^{a})$

Befunde gestützt: 1) Durch Methylierung von (E)- und (Z)-4 wurden die entsprechenden N, N-Dimethylaniline (E)- bzw. (Z)-15 erhalten (Schema 3). Die 24stdg. Erhitzung von (Z)-15 in Decanlösung (c=0.013 m) auf 240° führte nur zur Bildung von $5.8 \pm 0.8\%$ der thermodynamisch stabileren (E)-Form. Die Zugabe von 1 Mol.-Äquiv. N-Methylanilin veränderte die Produktzusammensetzung nicht. Gleiche Ergebnisse wurden bei 24stdg. Erhitzen von (E)-15 auf 240° erzielt, wobei sich 1,2% der (Z)-Form bildeten. Bei den N-monomethylierten Formen (E)- bzw. (Z)-4 wurde unter gleichen Bedingungen schon fast das thermodynamische Gleichgewicht erhalten (vgl. Tab. 2). 2) Die Erhitzung von (E)-N-Deuterio-N-methyl-2-(1'-propenyl)anilin (N-d-(E)-4; vgl. Schema 4) in Decan auf 220° ergab nach 8,5 Std. (ca. 0,5 $\tau_{1/2}$) ein (89:11)-Gemisch aus (E)- und (Z)-4. Nach H, D-Austausch am Stickstoffatom wurden die beiden Stereoisomeren durch präparative Gas-Chromatographie aufgetrennt. Aus den ¹H-NMR.-Spektren der reinen Isomeren liess sich entnehmen, dass Deuterium in beiden Isomeren ausschliesslich an C(2') lokalisiert war⁴). Durch Integration der Region von H-C(2') (als Standard diente der Integrationswert für H-C(3) und H-C(5) des Benzolkernes; vgl. Tab. 8 im exper. Teil) wurde für das Verhältnis 2'-d-(E)-4/(E)-4 0,4 und für 2'-d-(Z)-4/(Z)-4 0.9 gefunden.

Wie Schema 4 zeigt, steht der beobachtete spezifische D-Einbau an C(2') mit sigmatropischen [1,5]-H- bzw. -D-Verschiebungen im Propenylanilin (E)-4 im

⁴) Der spezifische D-Einbau an C(2') folgt auch aus den NMR.-Aufspaltungsmustern für H₃C-C(2') und H-C(1') (Allgemeine NMR.-Angaben siehe exper. Teil): Im deuteriumfreien (Z)-4 erscheint H₃C-C(2') bei 1,69 ppm als scharfes d×d mit den H,H-Kopplungen J(3',2')=6,5 und J(3',1')=1,5 Hz und H-C(1') bei 6,19 ppm als verbreitertes d mit J(1',2')=11 Hz. Das deuteriumhaltige (Z)-4 zeigt bei 1,69 ppm für H₃C-C(2') ein schmales m, da die H,D-Kopplung J(3',2') wesentlich kleiner ist als die entsprechende H,H-Kopplung. H-C(1') erscheint als breites m im Bereich von 6,1-6,35 ppm, da auch hier die neue H,D-Kopplung J(1',2')≈2 Hz ist (vgl. hierzu [5] [13]). Die gleichen, aufgrund des geringeren D-Gehaltes nicht so ausgeprägten Effekte finden sich auch beim deuterierten (E)-4-Präparat aus der Umlagerung.

Einklang. Ausgehend von N-d-(E)-4 führt die geschwindigkeitsbestimmende D-Verschiebung zum Zwischenprodukt d-16. Dieses kann durch Rückübertragung von H oder D an C(2') auf das N-Atom der Iminogruppe (E)- oder (Z)-4 zurückbilden. Wird angenommen, dass diese sigmatropische [1,5]-Wasserstoff- bzw. -Deuteriumübertragung einen ähnlichen primären Deuterium-Isotopieeffekt $k_{\rm H}/k_{\rm D} \approx 3$ aufweist, wie er für die (E), (Z)-Isomerisierung von 2,4-Dimethyl-6-(1'-propenyl)phenol gefunden wurde [1], so sollte d-16 zu etwa 75% in ein Gemisch aus 2'-d-(E)-4 und 2'-d-(Z)-4 und zu etwa 25% in ein Gemisch aus N-d-(E)-4 und N-d-(Z)-4 übergehen⁵). Demnach sollte das aus N-d-(E)-4 via d-16 entstehende (Z)-4 mindestens 75% 2'-d-(Z)-4 enthalten, d.h. das Verhältnis 2'-d-(Z)-4/(Z)-4 sollte 3,0 betragen. Der gefundene geringere Wert von 0,9 könnte darauf beruhen, dass $k_{\rm H}/k_{\rm D}$ < 3 ist. Dabei ist allerdings zu berücksichtigen, dass die gebildeten Molekeln 2'-d-(E)-4 und 2'-d-(Z)-4 einem raschen H, D-Austausch am N-Atom unterliegen, so dass kurz nach Reaktionsbeginn auch nicht-deuteriertes (E)-4 vorliegt (in Schema 4 nicht gezeigt). Aufgrund des primären Deuterium-Isotopieeffektes $k_{\rm H}/k_{\rm D} \approx 3$ sollte nichtdeuteriertes (E)-4 gegenüber N-d-(E)-4 bevorzugt in nicht-deuteriertes (Z)-4 übergeführt werden.

Der geringe Gehalt an 2'-d-(E)-4 im zurückisolierten (E)-4 ergibt sich aus dem «Verdünnungseffekt» mit nicht reagiertem N-d-(E)-4 (vgl. auch [1]).

3.3. Propenyl- und Butenyl-methylbenzole. Die thermische (E), (Z)-Isomerisierung dieser Verbindungen erforderte im Vergleich zu derjenigen der Propenylaniline nochmals eine um ca. 100° erhöhte Temperatur. Die für die Kohlenwasserstoffe **6-9** bei 360-380° in Decanlösung bestimmten Isomerisierungsgeschwindigkeiten sind in den Tabellen 4 und 5 zusammengestellt.

⁵) Es ist anzunehmen, dass aus **16** die (*E*)-Form bevorzugt gebildet wird aufgrund der geringeren sterischen Wechselwirkung im Übergangszustand im Vergleich zu dem, der zu der (*Z*)-Form führt. Bei der analogen [1,5]-H-Verschiebung in (*Z*)-Hexa-1,3-dien wird nämlich *ca.* 98% (*E*,*Z*)- und nur etwa 2% (*Z*,*Z*)-Hexa-2,4-dien gebildet [14].

	$\begin{array}{c} R=CH_3: (E)=6\\ R=C_2H_5: (E)=7 \end{array} \xrightarrow{H_3} \xrightarrow{R} \underbrace{k(E)}_{K(Z)} \xrightarrow{H_3C} \underbrace{k(E)}_{H_3C} \xrightarrow{(Z)=6}_{H_3C} (Z)=6 \end{array}$							
R	Temp. (°)	(<i>E</i>)(Gl.) (%)	(Z)(Gl.) (%)	K(E/Z)	$k(E) \cdot 10^{5a})^{b}$ (s ⁻¹)	$k(Z) \cdot 10^{5a})^{b}$ (s ⁻¹)		
CH3	358,5	53,6°) 53,5°)	46,4 46,5	1,15	1,51±0,03	1,75±0,03		
	368,0	53,4 53,6	46,6 46,4	1,15 (-0,18) ^d)	$2,\!89\!\pm\!0,\!05$	$3,33\pm0.07$		
	378,0	53,7 53,7	46,3 46,3	1,16	$5,\!05\!\pm0,\!07$	$5,87\pm0,08$		
CH ₃	$\Delta H^{\neq}_{368^{\circ}} \ \Delta S^{\neq}_{368^{\circ}}$		(kcal/mol) (e.u.)	<u> </u>	49.2 ± 2.4 - 5.4 \pm 0.4	$49,4\pm 2.1$ - 4.7 ± 0.3		
C ₂ H ₅	367,0	58,7°) 58,9°)	41,3 41,1	1,43 (-0,45) ^d)	3,48±0,07	4,96±0,09		

Tabelle 4. Thermische (E),(Z)-Isomerisierung von 2-(l'-Propenyl)mesitylen (6) und 2-(l'-Butenyl)mesitylen (7) in Decan (c=0,051M)

^a) Vgl. Fussnote ^a) zu Tab. 1.

b) k-Werte bestimmt aus Experimenten mit (Z)-Isomeren.

c) Vgl. Fussnote c) zu Tab. 1.

^d) $\Delta G(E/Z)$ in kcal/mol.

Tabelle 5. Thermische (E),(Z)-Isomerisierung von 2- und 4-(l'-Propenyl)toluol (8 und 9) in Decan $(c = 0.051 \text{ m})^a$)

	R¹=CH3,Ri R¹=H,R ² =(² =H:(<i>E</i>) −8 CH3:(<i>E</i>) −9 _R 2			(Z)- 8 (Z)- 9	
	Temp. (°)	(<i>E</i>)(Gl.) (%)	(Z)(Gl.) (%)	K(E/Z)	$k(E) \cdot 10^{5b}$ (s ⁻¹)	$k(Z) \cdot 10^{5b}$) (s ⁻¹)
$R^{1}=H$ $R^{2}=CH_{3}$	360,0	78,9°) 79,2°)	21,1 20,8	3,77	$0,43 \pm 0,01^{d})$	1,52±0,02
, i	370,0	78,3 78,0	21,7 22,0	3,58 (-1,63) ^f)	$0,73 \pm 0,01^{e})$ $0,77 \pm 0,02^{d})$	$2,60 \pm 0,04$ $2,78 \pm 0,05$
	380,0	76,9	22,5 23,1	3,39	$1,53 \pm 0,02^{d}$)	5,18±0,06
$R^1 = H$ $R^2 = CH_3$	${\it \Delta} H_{370^{\circ}}^{\neq} \ {\it \Delta} S_{370^{\circ}}^{\neq}$	(kcal/mol) (e.u.)			$50,4\pm 2,8$ - 5,0±0,4	$48.3 \pm 0.8 \\ - 5.7 \pm 0.2$
$R^{1} = CH_{3}$ $R^{2} = H$	367,5	66,5°) 66,6°)	33,5 33,4	1,99 (-0,88) ^f)	$0,94 \pm 0,02^{d})$ $(1,39 \pm 0,03)^{d})^{g})$	$1,87 \pm 0.03 \\ (2,49 \pm 0.05)$

a) Isomerisierungen in Weichglasbömbchen. Resultate für Pyrexbömbchen siehe Tab. 9, exper. Teil.

^b) Vgl. Fussnote ^a) zu Tab. 1.

^c) Vgl. Fussnote ^c) zu Tab. 1.

d) k-Werte bestimmt aus Experimenten mit dem (Z)-Isomeren.

e) k-Werte bestimmt aus Experimenten mit dem (E)-Isomeren.

f) $\Delta G(E/Z)$ in kcal/mol.

g) k-Werte aus Experimenten in Pyrexbömbchen.

Alle Isomerisierungen erfolgten nach 1. Ordnung. Im Gegensatz zu den einheitlich verlaufenden (E), (Z)-Isomerisierungen der 2-Propenylphenole und 2-Propenylaniline traten jedoch beim Erhitzen der aromatischen Kohlenwasserstoffevor allem bei den Mesitylverbindungen – Nebenprodukte auf. In Schema 5 ist die Produktbilanz von zwei Erhitzungen von (E)- und (Z)-6 in Decanlösung aufgeführt. Die Erhitzungsdauer entsprach etwa 15 $\tau_{1/2}$ der (E), (Z)-Isomerisierung. Die Identifizierung der Produkte erfolgte durch gas-chromatographischen Vergleich mit authentischem Material. 2-Allylmesitylen (18) [6] und das Indanderivat 17 wurden auf unabhängigem Wege synthetisiert (vgl. exper. Teil).

^a) Neben den angeführten Kohlenwasserstoffen traten noch in geringen Mengen nicht identifizierte Produkte auf. Keines dieser Produkte war gemäss gas-chromatographischem Vergleich identisch mit 5,7-Dimethyl-1,2, 3,4-tetrahydronaphthalin oder 5,7- bzw. 6,8-Dimethyl-1,2-dihydronaphthalin [15]. Ausbeuten in Bezug auf Pentadecan als Standard.

Bei parallelen Erhitzungen von (Z)-6 in Decanlösung mit und ohne Zugabe von 5 Mol.-Äquiv. Hydrochinon bzw. Diphenylamin wurden die gleichen Produktzusammensetzungen festgestellt. Auch die Isomerisierungsgeschwindigkeit wurde nicht beeinflusst.

Die Nebenprodukte, die bei der thermischen Isomerisierung der Propenyltoluole 8 und 9 im Vergleich zur Mesitylverbindung 6 (vgl. Schema 5) in wesentlich geringeren Mengen auftraten, wurden nicht identifiziert. Auch auf diese Umlagerungen übte die Anwesenheit von Diphenylamin beim Erhitzen in Weichglasbömbchen keinen Einfluss aus. In Pyrexbömbchen hingegen wurde bei Anwesenheit von Diphenylamin oder Hydrochinon eine deutliche Verlangsamung der Isomerisierung festgestellt. Die Beeinflussung der Reaktion durch die Pyrexglasoberfläche lässt sich auch deutlich an den Aktivierungsparametern der (E), (Z)-Isomerisierung von 9 erkennen: Die ΔH^{\neq} -Werte der Isomerisierung in Pyrexbömbchen liegen um 6 kcal/mol niedriger als die in Weichglasbömbchen gemessenen (vgl. Tab. 9, exper. Teil und Tab. 5). Auch bei (E)- und (Z)-2-(1'-Propenyl)toluol ((E)- und (Z)-8) wurden in Pyrexbömbchen im Vergleich zu den Weichglasbömbchen um ca. 40% grössere Isomerisierungsgeschwindigkeiten gemessen.

Um die Frage abzuklären, ob an der (E), (Z)-Isomerisierung von 8 1,5-Wasserstoffverschiebungen beteiligt sind, wurde 2'-d-(Z)-8 40 bzw. 160 Min. auf 370° erhitzt und das entstandene (E)-8 (13,5 bzw. 33,6%) von (Z)-8 getrennt. Das ²H-NMR.-Spektrum der reinen Isomeren zeigte eindeutig, dass in (E)-8 $12\pm 2\%$

der Gesamtmenge an Deuterium in die kernständige Methylgruppe eingebaut worden war (vgl. Schema 6 und Fig.). Im ²H-NMR.-Spektrum vom zurückgewonnenen 2'-d-(Z)-8 konnte kein Deuterium in der kernständigen Methylgruppe nachgewiesen werden. Dass die Deuteriumübertragung bei der Isomerisierung 2'-d-(Z)-8 \rightarrow d-(E)-8 intramolekular erfolgt, ergab sich aus einem entsprechenden Versuch mit 2'-d-(Z)-9. Nach 160 Min. Erhitzen auf 370° hatte sich

Fig. ²H-NMR.-Spektrum (Fourier-transformiert) von d-(E)-8 aus der Erhitzung von 2'-d-(Z)-8.

ein Gemisch aus 37% 2'-d-(Z)-9 und 63% 2'-d-(E)-9 gebildet. Die ²H-NMR.-Spektren der beiden Isomeren zeigten nur das Signal für Deuterium an C(2') der Propenylseitenkette, d. h. für die Deuteriumübertragung in die Methylgruppe ist die *ortho*-Nachbarschaft zur Propenylgruppe erforderlich, da nur dies eine intramolekulare H- bzw. D-Übertragung gestattet.

Im Zusammenhang mit dem thermischen Verhalten des Propenylmesitylens **6** wurde noch dasjenige von 2-(1'-Butenyl)mesitylen (7) und 2-(2'-Butenyl)mesitylen (10) untersucht: 7 ging bei 367° ebenfalls eine (*E*), (*Z*)-Isomerisierung 1. Ordnung mit einer Halbwertszeit von 140 Min. ein (*Tab. 4*). Auch hier entstanden Nebenprodukte. Die Resultate einer 24stdg. Erhitzung von (*E*)- bzw. (*Z*)-7 (*ca.* 10 $\tau_{1/2}$) in Decanlösung sind in *Tabelle 6* wiedergegeben. Die Nebenprodukte, nämlich die (2'-Butenyl)-Derivate (*E*)- und (*Z*)-10, 2-Äthyl-4,6-dimethylindan (19), 2,5,7-Trimethyl-1,2,3,4-tetrahydronaphthalin (20) sowie 1,2,3,5-Tetramethylbenzol und Mesitylen, wurden durch gas-chromatographischen Vergleich identifiziert.

 $\begin{array}{l} \mbox{Tabelle 6. Thermolyse von (E)- und (Z)-2-(l'-Butenyl)- und -2-(2'-Butenyl)mesitylen ((E)-, (Z)-7 und (E)-, (Z)-10) in Decanlösung während 24 Std. bei 367°a) \end{array}$

Produkte	Edukte			
	H ₃ C CH ₃		H ₃ C	H ₃ CH ₃ CH ₃
	(E) -7	(Z) -7	(E)-10 ^b)	(<i>z</i>) -10 °)
(<i>E</i>)-7 (%)	45,1	46,3	1,2	1,2
(Z)-7 (%)	24,8	26,0	0,7	1,0
(<i>E</i>)-10 (%)	0,9	0,3	55,6	2,7
(Z)-10(%)	< 0,5	< 0,5	1,3	52,0
H ₃ C	(%) 6,1	7,3	8,5	11,1
нзс 20	^(%) < 0.5	< 0,5	2,2	2,1
Н3ССН3	(%) 0,4	0,3	3,6	5,7
нзс СН3	(%) < 0.5	< 0.5	< 0,5	< 0,5

^a) Prozentangaben bezüglich Hexamethylbenzol als internem Standard.

b) (Z)-10-Gehalt vor dem Erhitzen 0,5%. Bei lstdg. Erhitzen von (E)-10 in Gegenwart von einem Mol.-Äquiv. meso-2,3-Diphenylbutan (Radikalbildner; τ_{1/2} bei 360° ca. 1 Std., vgl. [16]) in Decanlösung wurden die Hauptprodukte 19, 20 und 1,2,3,5-Tetramethylbenzol in ca. 10mal grösserer Menge gebildet als im Parallelexperiment ohne 2,3-Diphenylbutan-Zusatz.

c) (E)-10-Gehalt vor dem Erhitzen 0,3%.

Im Gegensatz zu 7 ging 2-(2'-Butenyl)mesitylen (10) bei 24stdg. Erhitzen auf 367° nur in geringem Ausmass (E), (Z)-Isomerisierung ein (Tab. 6). Nebenprodukte dieser Erhitzung sind die Propenylverbindungen (E)- und (Z)-7, Mesitylen, das Tetrahydronaphthalinderivat 20 und zu ca. 11 bzw. 6% das Indanderivat 19 und 1,2,3,5-Tetramethylbenzol. Mit dem Ziel, die beiden letztgenannten Kohlenwasserstoffe präparativ zu isolieren, wurde 10 in Substanz 30 Tage auf 300° erhitzt. Danach setzte sich das Reaktionsgemisch wie folgt zusammen: 0,5% (E)- und (Z)-10, 0,5% (E)- und (Z)-7, 30% Indan 19 und 43% 1,2,3,5-Tetramethylbenzol. Die beiden letztgenannten Kohlenwasserstoffe liessen sich durch präparative Gas-Chromatographie rein erhalten, das Benzolderivat wurde durch spektroskopischen und gas-chromatographischen Vergleich mit authentischem Material identifiziert, die Konstitution des Indans 19 folgte aus den spektralen Daten (vgl. exper. Teil).

In Analogie zur Bildung des Indans 17 aus 6 ist für das Indan aus 7 und 10 vor allem die Konstitution 19 in Betracht zu ziehen. Das NMR.-Spektrum zeigt, dass die Molekel nicht symmetrisch ist, keine Vinylprotonen, hingegen 2 H-Atome und 2 Methylgruppen enthält, die an einen Aromaten gebunden sind. Da die aliphatische Methylgruppe als Triplett erscheint, muss die Verbindung eine Äthylgruppe enthalten, die nicht an den Benzolring gebunden sein kann. Der Ringschluss in 7 bzw. 10 muss demnach unter Einbezug einer an den Benzolkern gebundenen Methylgruppe erfolgt sein. Andernfalls müssten in 19 Signale von 3 aromatischen Methylgruppen und kein Triplett einer aliphatischen Methylgruppe auftreten. Eine Alternativstruktur mit 1- oder 3-ständiger Äthylgruppe in einem Dimethylindanskelett erscheint wenig wahrscheinlich, da das Muster der aliphatischen Protonen im NMR.-Spektrum von 1-Äthylindan [17] deutlich verschieden ist von demjenigen des entsprechenden Bereichs von 19 (vgl. exper. Teil). Ferner sind die Resonanzpositionen der aromatischen H-Atome und Methylgruppe in 19 geht überdies aus den Massenspektren hervor: während das Verhältnis $M^+/M^+ - 29$ beim 1-Äthylindan 0,2 beträgt, ist es bei 19 1,0.

Das Tetrahydronaphthalinderivat **20** wurde durch ein GC./MS.-Experiment⁶) und durch gas-chromatographischen Vergleich mit authentischem Material (vgl. exper. Teil) identifiziert.

4. Diskussion. - Die voranstehenden Versuche zeigen, dass die thermische (E),(Z)-Isomerisierung des 3,5-Dimethyl-2-(1'-propenyl)phenols (3) sowie der 2-Propenylaniline 4 und 5 über sigmatropische [1,5]-Wasserstoffverschiebungen erfolgt. Anders liegt der Fall offenbar bei der thermischen (E), (Z)-Isomerisierung der (1'-Propenyl)- und (1'-Butenyl)mesitylene (E)-, (Z)-6 und -7 sowie der Propenyltoluole (E)-, (Z)-8 und -9. In Tabelle 7 sind die Aktivierungsparameter für die (Z) \rightarrow (E)-Isomerisierung von (Z)-3, -5, -6 und -9 sowie einer Reihe von Verbindungen (Beispiele 1.-5.), von denen angenommen wird, dass sie über vibronisch angeregte Singulett-Zustände reagieren, angeführt. Daraus ist ersichtlich, dass einerseits sowohl die $\Delta H_{25^{\circ}}^{\neq}$ als auch die log A-Werte für (Z)-3 und -5 deutlich von denjenigen für die Vergleichsverbindungen (1.-5.) abweichen, andererseits aber die Werte für (Z)-6 und -9, insbesondere die log A-Werte, sehr gut damit vergleichbar sind. Es ist hieraus zu schliessen, dass nicht nur die Isomerisierung von (Z)-9, sondern auch die von (Z)-6, die im Prinzip via sigmatropische [1,5]-Wasserstoffverschiebungen ablaufen könnte, über Singulett-Diradikale erfolgt. Wird die $(Z) \rightarrow (E)$ -Isomerisierung von (Z)-2-Buten als Bezugssystem gewählt, so lassen sich aus den unter 2.-7. aufgeführ-

⁶) Wir danken Herrn Dr. *N. Neuner*, *Givaudan* Forschungsgesellschaft, Dübendorf, für die Ausführung dieses Experimentes.

Vert	bindung	∠H [≠] _{25°} (kcal/mol)	$\log A$ (s ⁻¹)	ΔΔH [≠] ₂₅ . ^b) (kcal/mol)	Lit.
1.	снз снз	61,8°)	13,8	-	[18]
2.	CH3 CN	50,7 (57,5) ^d)	11,0 (13,0) ^d)	11,1 (4,3)	[19]
3.	сн3 соосн3	57,2	13,2	4,6	[21]
4.	_/=_	43,7	12,9	9,1	[12]
5.	Ph Ph	42,2	12,8	9,8	[22]
6.	H ₃ C (Z)-6	50,1	12,8	11,7	°)
7.	н ₃ с (Z)-9	49,0	12,3	12,8	e)
8.	H ₃ C (Z)-5	28,2	7,5	-	e)
9.	н ₃ с (Z)-3	26,1	9,7	-	°)

Tabelle 7. Vergleich der Aktivierungsgrössen für thermische $(Z) \rightarrow (E)$ -Isomerisierungen^a)

^a) Bei den $(Z) \rightarrow (E)$ -Isomerisierungen unter 1.-5. handelt es sich um Gasphasereaktionen bei 10-50 Torr.

b) $\Delta \Delta H_{25}^{+} = \Delta E_a = \text{Radikalstabilisierungsenergie}$ unter Verwendung von E_a der $(Z) \rightarrow (E)$ -Isomerisierung von (Z)-2-Buten als Referenzwert.

c) Referenzwert; Mittel der unter [18] zitierten Werte.

^d) In [20] abgeschätzter Wert unter der Annahme, dass $\log A = 13,0$ ist.

e) Werte aus dieser Arbeit, vgl. *Tab. 1* und 3-5.

ten $(Z) \rightarrow (E)$ -Isomerisierungen für die mit der (Z)-konfigurierten Doppelbindung in Konjugation stehenden Substituenten (Cyano-, Methoxycarbonyl-, Vinyl-, Phenyl-, Mesityl- bzw. *p*-Tolylgruppe) Radikalstabilisierungsenergien (ausgedrückt in $\Delta A H_{25}^{\neq}$ -Werten) herleiten. Letztere sind mit denen aus Ringöffnungsreaktionen von entsprechend substituierten Cyclopropan- und Cyclobutanderivaten sowie aus Thermolysen entsprechend substituierter Azoalkane oder Alkane durchaus vergleichbar (vgl. [23]). Aus den letztgenannten Reaktionen lassen sich z. B. mittlere Radikalstabilisierungsenergien für CH₂=CH von 11,3±2, für C₆H₅ von 12,2±2, für ROOC von 5,5±2 und für N≡C von 6,6±2 kcal/mol ableiten [23].

Schema 7 enthält die k_{rel} -Werte der $(Z) \rightarrow (E)$ -Isomerisierung der (1'-Propenyl)und (1'-Butenyl)mesitylene bzw. -toluole **6-9** bei 368°. Die sehr geringe Variation der k_{rel} (368°)-Werte zeigt, dass auch die Isomerisierung von (Z)-7 und -8 über Singulett-Diradikale erfolgen muss. Die beim Erhitzen von 2'-d-(Z)-8 beobachtete Deuteriumübertragung in die kernständige Methylgruppe im Verlauf der Isomerisierung scheint demnach eher via eine 1,5-Wasserstoffübertragung im Singulett-Diradikal a eingeleitet zu werden (Schema 8). Aus a entsteht dabei das dibenzylische Diradikal b, das auch in seiner Chinodimethan-Struktur formuliert werden kann⁷). Eine [1,5]-D-Verschiebung im Chinodimethan kann dann das in der kernständigen Methylgruppe deuterierte (E)-8 liefern⁸).

Dass in thermisch erzeugten 1,2-Diradikalen offenbar nicht nur 1,5- sondern auch 1,4-H-Verschiebungen ablaufen können, zeigt das Erhitzen von (E)- und (Z)-6 bzw. -7, die bei langer Reaktionsdauer $(>10 \tau_{1/2})$ die Indane 17 bzw. 19 ergaben. Der wahrscheinliche Reaktionsablauf ist in *Schema 9* dargestellt. Demnach wird aus 6 und 7 das Diradikal c gebildet, aus dem durch die 1,4-H-Verschiebung d entsteht, dessen Cyclisierung 17 bzw. 19 ergibt (vgl. [28] für Beispiele von radikalischen 1,4-H-Verschiebungen).

- ⁷) Es liegen Befunde vor, dass Chinodimethane im Grundzustand diradikal-artigen Charakter besitzen [24].
- ⁸) [1,5]-H-Verschiebungen auch photochemische [25] in ω -alkylierten Chinodimethanen sind bekannt [26] (vgl. auch [5] [27]).

Es ist bemerkenswert, dass das 2-Äthylindan-Derivat **19** nicht nur bei der thermischen Äquilibrierung von 7, sondern auch beim Erhitzen der zu 7 isomeren Verbindungen (*E*)- und (*Z*)-**10** entsteht, ohne dass bei letzteren eine signifikante (*E*), (*Z*)-Isomerisierung beobachtet wird (vgl. *Tab. 6*). Ein weiterer Unterschied im thermischen Verhalten von 7 und **10** kommt in der Bildung des Tetrahydronaphthalinderivats **20** aus **10** zum Ausdruck⁹). Die Bildung von **19** und **20** auf intramolekularem Wege müsste über das Singulett-Diradikal **e** erfolgen (*Schema 10*), aus dem durch 1,5-H-Verschiebung das stabilisierte Alkyl-benzyldiradikal **f**

⁹) Die verstärkte Bildung von 1,2,3,5-Tetramethylbenzol beim Erhitzen von 10 im Vergleich zu derjenigen von 7 könnte auf einer Isomerisierung von 10 zu 2-(3'-Butenyl)mesitylen beruhen, das bei 367° unter Homolyse der C(1'), C(2')-Bindung in ein 2,4,6-Trimethylbenzyl- und ein Allylradikal zerfällt (*meso*-2,3-Diphenylbutan besitzt ein τ_{1/2} (360°) von ca. 1 Std.; vgl. auch Tab. 6, Fussnote ^b)). Für die Bildung von 1,2,3,5-Tetramethylbenzol aus 7 bietet sich die gleiche Zerfallsreaktion nur via Isomerisierung zu 10 an, das im Äquilibrierungsgemisch von 7 auch gefunden wird (vgl. *Tab.* 6).

entstehen könnte. Die direkte Cyclisierung von f würde zu 20 führen, während für die Bildung von 19 eine weitere 1,2-Wasserstoffverschiebung in f zum Alkylbenzyldiradikal d und dessen Cyclisierung angenommen werden müsste. Da aber im Reaktionsgemisch von 10 4-5mal mehr Indanderivat 19 als Tetrahydronaphthalinderivat 20 gefunden wird, erscheint die Bildung von 19 und 20 auf dem angegebenen Weg ziemlich unwahrscheinlich. Es ist eher anzunehmen, dass 19 und 20 aus dem Benzylradikal g, das möglicherweise durch eine Radikalkettenreaktion entsteht, gebildet werden, indem g durch Ringschluss in die cyclischen Radikale h und i übergeht. Die letztgenannten Radikale können unter Bildung von 19 und 20 als Radikalkettenträger dienen¹⁰). Es ist bekannt, dass bei der Cyclisierung des 1-Phenyl-5-hexen-1-yl-Radikals Cyclopentan- und Cyclohexanderivate im Verhältnis von etwa 10:1 gebildet werden [29] [30] (vgl. auch [31]). Entsprechend wurde auch beim Erhitzen von (E)-10 in Gegenwart von meso-2,3-Diphenylbutan ca. 10mal mehr von den Cyclisierungsprodukten 19 und 20 gefunden als beim Erhitzen von reinem (E)-10, wobei das Verhältnis 19:20 vergleichbar war (vgl. Tab. 6, Fussnote b)).

Die thermische (E), (Z)-Isomerisierung von (E)- bzw. (Z)-2-(1'-Propenyl)mesitylen ((E)- bzw. (Z)-6) wie auch von (E)- bzw. (Z)-2-(1'-Propenyl)toluol ((E)bzw. (Z)-8) verläuft also im Gegensatz zu derjenigen der Propenylphenole (E)und (Z)-3 und der Propenylaniline (E)- und (Z)-4 bzw. -5 nicht mehr über [1,5]-Wasserstoffverschiebungen. Hierfür kann im wesentlichen die eingangs erwähnte grosse Differenz in den BE. vom aromatischen System 1 und vom Chinodimethan 2 (X=CH₂; Schema 1) verantwortlich gemacht werden. Wie wir schon früher gezeigt haben, können aber auch bei aromatischen Kohlenwasserstoffen unter Desaromatisierung erfolgende [1,5]-Wasserstoffverschiebungen eintreten, wenn $\triangle BE$. verkleinert wird. Dies ist der Fall bei der thermischen Umlagerung (170°) von 2-Allenylmesitylen und seinen in der Allenylkette methylsubstituierten Derivaten, wobei sich ein 1,2-Dihydronaphthalin und/oder das entsprechend substituierte 2-(1',3'-Butadienyl)mesitylen [15] [32] bildet. Im geschwindigkeitsbestimmenden Schritt wird bei dieser Reaktion das H-Atom von einem sp³- an ein sp-hybridisiertes C-Atom verschoben, was mit der erstaunlich niedrigen Aktivierungsenergie von ca. 29 kcal/mol vonstatten geht. In der aliphatischen Reihe weisen [1,7a]-H-Verschiebungen um ca. 15 kcal/mol niedrigere Aktivierungsenergien auf als entsprechende [1,5s]-Umlagerungen (vgl. die Zusammenstellung in [33]). Es ist deshalb verständlich, dass auch bei aromatischen Kohlenwasserstoffen [1,7a]-H-Verschiebungen unter Einbezug des Aromaten eintreten können, wie es anhand der thermischen (225°) (E), (Z)-Isomerisierung von (Z, Z)- und (Z, E)-1,2-Di-(1'-propenyl)benzol gezeigt wurde [34]. Dass die Ausdehnung der Konjugation im Chinodimethan 2 $(X = CH_2)$ ausreicht, um aromatische [1, 7a]-sigmatropische Wasserstoffverschiebungen zuzulassen, ergibt sich auch aus Erhitzungsexperimenten (180-200°; Decan) mit (1'Z, 3'Z)- und (1'Z, 3'E)-2-(1', 3'-Pentadienyl)mesitylen [35]. Man beobachtet dabei im wesentlichen eine (E), (Z)-Isomerisierung an der C(3'), C(4')-Doppelbindung, wie sie auch beim Erhitzen der entsprechend konfigurierten 2-(1',3'-Pentadienyl)phenole auftritt [36].

¹⁰⁾ Ein geeigneter Radikalketteninitiator im Schritt 10→g könnte das postulierte 2,4,6-Trimethylbenzyl-Radikal sein (vgl. Fussnote ⁹)).

Abschliessend sei noch auf die beobachteten K(E/Z)-Werte der Propenylverbindungen eingegangen. Für die Kohlenwasserstoffe **6**, **8** und **9** wurden bei 368° Werte von 1,15, 1,99 bzw. 3,58 gemessen, d. h. mit abnehmender Anzahl der Methylgruppen in 2- und 6-Stellung bezüglich der Propenylseitenkette nimmt die Stabilität der (E)-Form gegenüber der (Z)-Form erwartungsgemäss zu. Der gleiche Gang wird auch bei den Propenylverbindungen **4** und **5** beobachtet: bei 240° beträgt K(E/Z) für **4** 2,04, für **5** hingegen nur 1,05. Bei allen diesen Verbindungen wird mit steigender Temperatur eine mehr oder weniger ausgeprägte Zunahme der (Z)-Isomeren im Gleichgewichtsgemisch beobachtet. Im Gegensatz hierzu steht das 2-Propenylphenol **3**, bei dem im Temperaturbereich von 130–150° eine leichte Abnahme des Anteils an (Z)-Form beobachtet wird. Da (E)- und (Z)-**3** die einzigen der hier diskutierten Verbindungen sind, die intramolekulare Wasserstoffbrücken aufweisen, dürfte die Stabilität der beiden Isomeren im untersuchten Temperaturbereich von dieser Wasserstoffbrücke, die bei (Z)-**3** stärker ist als bei (E)-**3**, mitbestimmt werden.

Wir danken den analytischen Abteilungen des Organisch-chemischen Institutes der Universität Zürich für Spektren und Analysen, Herrn Dipl. Ing. HTL K. Hochreutener für den Bau einer Hochtemperaturregelung, Herrn H. Strolz für die Einrichtung eines Salzschmelze-Ofens sowie Herrn Prof. Dr. K. Grob für wertvolle Ratschläge bei gas-chromatographischen Problemen. Die Arbeit wurde wiederum in verdankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

Experimenteller Teil

Allgemeine Bemerkungen. Siehe [1a]. - UV.-Spektren in Hexan (Uvasol, Merck); Angabe von λ_{\max} in nm (log ε); sch. = Schulter, min. = λ_{\min} . - IR.-Spektren, wenn nicht anders angegeben, als Film. -NMR.-Spektren, wenn nicht anders angegeben, in CCl4 bei 100 MHz. - ²H-NMR.-Spektren bei 15,4 MHz; Angabe der chemischen Verschiebungen der protonenentkoppelten Signale in ppm bezogen auf internes TMS (=0 ppm). - Massenspektren (MS.) an einem CEC-21-110B-Gerät bei 70 eV, Direkteinlass; Angabe der Pike in m/e (rel. %). - Analytische Gas-Chromatogramme (GC.) an C. Erba-Geräten, Modell D(FID) und GI(FID), mit Glaskapillarkolonnen nach Grob [37] (16-19 m×0,34-0,38 mm) beladen mit XE-60 (für Phenole), Emulphor (basisch, für Aniline), OV-17 bzw. XF-1105 (für Kohlenwasserstoffe); Trägergas Wasserstoff. Die quantitative Auswertung der GC. erfolgte mit einem elektronischen Integrator (Infotronics CRS-101); die angegebenen Werte stellen die Mittel aus mindestens vier GC. dar. Präparative Gas-Chromatographie (präp. GC.) an einem F & M-Gerät, Modell 700, mit einer mit 16% XE-60 auf Chromosorb W(AW/DMCS, 60-80 mesh) gefüllten Glassäule (4.9 m×1.2 cm) bzw. an einer mit 15% Ucon HB-5100 und 0.5% KOH auf Chromosorb P (HMDS, 60-80 mesh) gefüllten Stahlsäule (2 m \times 1,2 cm). Die quantitative Auswertung der GC.-Daten, insbesondere die Bestimmung der Geschwindigkeitskonstanten und der Aktivierungsparameter, erfolgte mit einem Wang 600-Tischcomputer. - Analytische Dünnschichtchromatogramme (DC.) an Kieselgel N-HR/UV254 (Fertigfolien Polygram, Macherey-Nagel); präparative DC. an Fertigplatten des Typs Kieselgel F₂₅₄ (Merck). Sprühreagentien: 1proz. Na₂CO₃-alkalische Kaliumpermanganatlösung, 3,5proz. Molybdatophosphorsäure bzw. 2proz. Cer(IV)sulfatlösung in 2N Schwefelsäure. Abdampfoperationen im Rotationsverdampfer bei 30°/12 Torr oder über eine 20 cm lange Vigreux-Kolonne.

Präparative thermische Umlagerungen in Pyrexbomben (mit bidest. Wasser gespült und ausgedämpft, abgeschmolzen bei 10^{-2} Torr) wurden in einem Bombenofen ausgeführt; Temp.konstanz $\pm 2^{\circ}$. Die präparativen thermischen Umlagerungen in Weichglasbomben (Blei-Pottasche-Glas, *Philips*; mit bidest. Wasser gespült, ausgedämpft und i.HV. bei 160° getrocknet; abgeschmolzen bei 10^{-3} Torr) erfolgten in einem Salzschmelze-Thermostaten (Natrium-/Kaliumnitrat 1:1; Temp.konstanz $\pm 0,2^{\circ}$). – Die analytischen Erhitzungen erfolgten i.HV. (10^{-3} Torr) in Pyrex- bzw. Weichglasbömbchen (Volumen *ca.* 2 bzw. 3,5 ml), die wie beschrieben (präp. Umlagerungen) behandelt worden waren. Umlagerungen bei Temp. bis 250° in einem Siliconöl-Thermostaten, Temp.konstanz $\pm 0,1^{\circ}$. Umlagerungen bei Temp.

2050

über 300° im Salzschmelze-Thermostaten, Temp.konstanz $\pm 0.5°$ (Kinetiken in Pyrexglas) bzw. $\pm 0.1°$ (Kinetiken in Weichglas, Kontrollexperimente). Wegen des Temperaturschocks beim Eintauchen in die Salzschmelze (360-380°) mussten die Weichglas-Bömbchen an der Abschmelzstelle mit Wasserglas geschützt werden. – Das für die thermischen Umlagerungen verwendete Decan (*Fluka, puriss.*) wurde durch Alox (*Woelm*, basisch, Aktivitätsstufe I) filtriert und über Calciumhydrid unter Argon destilliert.

1. Synthese der Propenylbenzole. – 1.1. 3,5-Dimethyl-2-(1'-propenyl)phenol (3). 1.1.1. 2-Allyl-3,5dimethylphenol [9]. Die Verbindung wurde in analoger Weise wie unter [38] beschrieben durch Verätherung von 3,5-Dimethylphenol mit Allylbromid und anschliessender Claisen-Umlagerung des Äthers hergestellt. Smp. 48,7-49,7° (Pentan). – IR. (CCl₄): 3610 (freies OH), 3535 (chel. OH), 3080, 3008 (CH=CH₂), 1640, 1627 (C=C), 1585, 1496 (Aromat), 996, 911 (CH=CH₂), 841, 830 (isol. arom. H). – NMR. (60 MHz, CCl₄): 6,48 und 6,33 (2 verbreit. s, H-C(4), -C(6)), 6,25-5,55 (m, H-C(2')), 5,2-4,7 (m, 2 H-C(3')), 4,67 (s, HO), 3,32 (d mit Feinaufspaltung, J = 6, 2 H-C(1')), 2,22 (s, H₃C-C(3), -C(5)).

C11H14O (162,23) Ber. C 81,44 H 8,69% Gef. C 81,46 H 8,94%

1.1.2. 2-Propenylphenol 3 [9]. 20 g (0,12 mol) 2-Allyl-3,5-dimethylphenol wurden in 60 ml ges. methanolischer Kaliumhydroxidlösung 8 Std. auf 110° erhitzt (vgl. [3]). Die erkaltete Mischung wurde mit Salzsäure angesäuert und mehrmals mit Äther extrahiert, die vereinigten Ätherextrakte neutral gewaschen, getrocknet und eingedampft: 18 g (90%) braunes Öl der Zusammensetzung (GC.) 8,5% 2-Allyl-3,5-dimethylphenol, 15% (Z)-3 und 76% (E)-3, aus dem ein Teil der Substanz auskristallisierte. Durch wiederholtes Umkristallisieren aus Hexan und präp. DC. an Kieselgel mit Pentan/Äther 19:1 wurde (E)-3 rein erhalten. Aus der mit (Z)-3 angereicherten Mutterlauge wurde durch mehrmalige präp. DC. und Umkristallisieren aus Pentan reines (Z)-3 isoliert: Smp. 51-52° (Pentan). – UV.: 237,5 sch. (3,73), 281,5 (3,38); min. 262,5 (3,07). – IR. (CCl₄): 3611 (freis OH), 3540 (chel. OH), 1640, 1626 (C=C, konj.), 1572, 1497 (Aromat), 1165, 1046 (C-O), 839 (isol. arom. H), 707 (CH=CH, cis). – NMR.: 6,45 (s, 2 arom. H), 6,19 (br., teilweise verdecktes d, J=11, H-C(1')), 6,15-5,80 (teilweise verdecktes $d \times qa$, J=11 und 6, H-C(2')), 4,77 (s, HO), 2,23 und 2,09 (2 s, H₃C-C(3), -C(5)), 1,58 (d, J=6, H₃C-C(2')). – MS.: 162 (M^+ , 100), 147 (75), 119 (25), 91 (15).

C₁₁H₁₄O (162,23) Ber. C 81,44 H 8,69% Gef. C 81,57 H 8,46%

(*E*)-3: Smp. 67,5-68° (Pentan). – UV.: 249 (3,85), 2,88 (3,38); min. 275 (3,26). – IR. (CCl₄): 3607 (freies OH), 3540 (chel. OH), 1629 (C=C, konj.), 1574, 1495 (Aromat), 1165, 1046 (C-O), 980, 971 (CH=CH, *trans*), 842 (isol. arom. H). – NMR.: 6,44 und 6,41 (2 s, 2 arom. H), 6,25 (br. d, J = 16, H–C(1')), 5,86 ($d \times qa$, J = 16 und 6, H–C(2')), 5,17 (s, HO), 2,19 und 2,14 (2 s, H₃C–C(3), –C(5)), 1,92 (d, J = 6, H₃C–C(2')). – MS.: 162 (M^+ , 69), 147 (100), 119 (46), 91 (33), 77 (23).

C11H14O (162,23) Ber. C 81,44 H 8,69% Gef. C 81,64 H 8,70%

1.2. N-Methyl-2-(1'-propenyl)anilin (4). 2-Allyl-N-methylanilin (13) wurde durch zinkchloridkatalysierte, thermische Umlagerung von N-Allyl-N-methylanilin (11) erhalten [4]. 8,9 g (95proz.; 61 mol) 13 wurden in Analogie zu [3] mit ges. methanolischer Kaliumhydroxidlösung unter Argon 5 Std. auf 110° erhitzt. Nach dem Erkalten wurden zum Gemisch 300 ml Wasser gegeben und es wurde 3mal mit Äther ausgeschüttelt. Die Ätherphasen wurden mit Wasser neutral gewaschen und getrocknet. Abdampfen des Lösungsmittels ergab 8,3 g (93%) gelbes Öl der Zusammensetzung (GC.) 70,5% (E)-4, 23,0% (Z)-4, 5,0% N-Allyl-N-methylanilin (11) und 0,6% 13. Reines (E)- und (Z)-4 wurde durch präp. GC. erhalten. (Z)-4 (vgl. [4]): Destillation bei 50-60°/0,006 Torr lieferte ein farbloses Öl. – UV.: 220 (4,28), 245 (3,95), 306 (3,55); min. 274 (2,81). – IR.: 3430 (NH), 2817 (NCH₃), 747 (4 benachb. arom. H), 712 (CH=CH, *cis*). IR. (CCl₄): 3440 (NH). – NMR.: 7,2-6,8 (m, H-C(3), -C(5)), 6,7-6,4 (m, H-C(4), -C(6)), 6,19 (d mit Feinaufspaltung, J=11, H-C(1')). 5,80 (d×qa, J=11 und 6,5, H-C(2')), 3,55 (br. s, HN), 2,78 (d, J=4,5, CH₃N), 1,69 (d×d, J=6,5 und 1,5, H₃C-C(2')). – MS.: 147 ($M^{+}_{,,,}$ 100), 132 (79), 130 (30), 118 (84), 117 (45), 91 (24), 77 (18).

C10H13N (147,21) Ber. C 81,58 H 8,90 N 9,52% Gef. C 81,35 H 9,01 N 9,23%

(Z)-N, N-Dimethyl-2-(1'-propenyl)anilin ((Z)-15), hergestellt durch Methylierung von (Z)-4: Destillation bei 35-45°/0,01 Torr. – IR.: 2785 (NCH₃), 700 (CH=CH, *cis*), 761, 743 (4 benachb. arom. H). – NMR.: 7,25-6,7 (m, 4 arom. H), 6,46 (d mit Feinaufspaltung, J = 11,5, H-C(1')), 5,67 ($d \times qa$, J = 11,5 und 7, H-C(2')), 2,67 (s, 2 CH₃N), 1,85 ($d \times d$, J = 7 und 1,8, H₃C-C(2')). (*E*)-4: Destillation bei 55-65°/0,006 Torr ergab ein leicht gelbliches Öl. – UV.: 224 (4,35), 254 (3,98), 315 (3,62); min. 249 (3,95), 279 (2,95). – IR.: 3435 (NH); 2815 (NCH₃), 970 (CH=CH, *trans*), 745 (4 benachb. arom. H). IR. (CCl₄): 3450 (NH). – NMR.: 7,15-6,9 (*m*, H–C(3), –C(5)), 6,7-6,3 (*m*, H–C(4), –C(6)), 6,30 (*d*, teilweise verdeckt, J = 15,5, H–C(1')), 5,90 ($d \times qa$, J = 15,5 und 6, H–C(2')), 3,57 (br. *s*, HN), 2,71 (*s*, CH₃N), 1,83 ($d \times d$, J = 6 und 1,5, H₃C–C(2')). – MS.: 147 (M^+ , 100), 132 (81), 130 (32), 118 (83), 117 (47), 91 (23), 77 (19).

C₁₀H₁₃N (147,21) Ber. C 81,58 H 8,90 N 9,52% Gef. C 81,67 H 8,93 N 9,50%

(E)-N, N-Dimethyl-2-(1'-propenyl)anilin ((E)-15), hergestellt durch Methylierung von (E)-4: Destillation bei 50-60°/0,03 Torr. – UV.: 233 (4,28), 256 sch. (4,07), 304 (3,44); min. 283 (3,23). – IR.: 2785 (NCH₃), 982 (CH=CH, trans), 762, 750 (4 benachb. arom. H). – NMR.: 7,35-6,8 (m, 4 arom. H), 6,70 ($d \times qa$, J = 16 und 1,5, H–C(1')), 6,04 ($d \times qa$, J = 16 und 6,5, H–C(2')), 2,66 (s, 2 CH₃N), 1,90 ($d \times da$, J = 6,5 und 1,5, H₃C–C(2')). – MS.: 161 (M^+ , 100), 160 (44), 146 (41), 144 (24), 132 (65), 131 (26), 130 (18), 117 (21), 91 (12), 77 (10).

 $C_{11}H_{15}N(161,24)$ Ber. C 81,93 H 9,38 N 8,69% Gef. C 81,79 H 9,61 N 8,81%

1.3. 3,5-Dimethyl-2-(1'-propenyl)anilin (5). 1.3.1. N-Allyl-3,5-dimethylanilin (12). 34 g (0,15 mol) N-Benzoyl-3,5-dimethylanilin (Smp. 139-140°; hergestellt aus 3,5-Dimethylanilin und Benzoylchlorid in Pyridin, vgl. [39]) wurden in 170 ml DMF unter Argon mit ca. 4,5 g Natriumhydrid versetzt. Nach beendeter Gasentwicklung (ca. 1 Std.) wurden 24 g (0,19 mol) Allylbromid (Fluka) portionenweise zugegeben und die Mischung 3 Std. bei 50-60° belassen. Nach dem Erkalten wurden 500 ml Wasser zugegeben, mit Äther extrahiert, die Ätherextrakte mit 2n Schwefelsäure, Natriumhydrogencarbonat-Lösung und Wasser gewaschen und getrocknet. Destillation bei 120-140°/0,001 Torr ergab 39 g (97%) N-Allyl-N-benzoylanilin, Smp. 67,5-68° (Pentan). 35 g (0,13 mol) dieses Produktes wurden mit 150 ml konz. Salzsäure in 150 ml Dioxan 4 Std. unter Rückfluss erhitzt. Die erkaltete Lösung wurde mit Äther ausgeschüttelt, die wässerige Phase alkalisch gemacht, wiederum mit Äther extrahiert und die Extrakte getrocknet. Nach Chromatographie des Rohproduktes an Kieselgel mit Pentan/Äther 2:1 und Destillation bei 110-125°/12 Torr wurden 11,7 g (54%) 12 erhalten. - IR.: 3407 (NH), 3080, 3010 (CH=CH2), 1646 (C=C), 1605, 1516 (Aromat), 991, 920 (CH=CH₂), 821 (isol. arom. H). - NMR. (60 MHz, CCl₄): 6,20 (br. s, H-C(4)), 6,06 (br. s, H-C(2), -C(6)), 6,0-5,55 (m, H-C(2')), 5,4-4,9 (m, 2 H-C(3')), $3,63 (d \times t, J = 5 \text{ und } 1,3, 2 \text{ H} - C(1')), 3,37 (s, \text{HN}), 2,16 (s, \text{H}_3\text{C} - C(3), -C(5)). - \text{MS.: } 161 (M^+, 100),$ 160 (34), 146 (36), 145 (14), 144 (16), 134 (77), 132 (14), 105 (14), 91 (12), 77 (14).

C₁₁H₁₅N (161,24) Ber. C 81,93 H 9,38 N 8,69% Gef. C 81,81 H 9,38 N 8,86%

1.3.2. 2-Allyl-3,5-dimethylanilin (14). 11 g (68 mmol) 12 wurden mit 11 g (82 mmol) wasserfreiem Zinkchlorid in 30 ml Xylol bei 140° 20 Std. unter Argon gerührt (vgl. [4]). Nach Abkühlung der Mischung auf RT. wurden 8 g (0,2 mol) Natriumhydroxid in 40 ml Wasser zugefügt und so lange kräftig gerührt, bis die erstarrte Zinkchloridphase in Zinkhydroxid übergeführt worden war. Nach mehrmaligem Ausschütteln der alkalischen Phase mit Äther wurden die vereinigten Extrakte mit ges. NaCl-Lösung gewaschen und getrocknet. Destillation bei 65-80°/0,01 Torr ergab 9,7 g (88%) Amingemisch folgender Zusammensetzung (GC.): 84% 14, 10% 3,5-Dimethylanilin, 1% 12, 1% (E)-5 und 0,5% (Z)-5. Ein Teil der Substanz wurde über das Hydrochlorid (Smp. 30,0-30,5° (Essigester)) gereinigt. 14: Smp. 27,5-28,5°. – IR.: 3450, 3370 (NH₂), 3090, 3020 (CH=CH₂), 1630 (C=C), 1590, 1500 (Aromat), 1002, 920 (CH=CH₂), 840 (isol. arom. H). – NMR. (60 MHz, CCl₄): 6,25 (br. s, H-C(6)), 6,11 (br. s, H-C(4)), 6,05-5,45 (m, H-C(2')), 5,05-4,6 (m, 2 H-C(3')), 3,5-3,0 (m, 2 H-C(1') und NH₂), 2,12 (s, H₃C-C(3), -C(5)).

C₁₁H₁₅N (161,24) Ber. C 81,93 H 9,38 N 8,69% Gef. C 82,05 H 9,42 N 8,92%

1.3.3. 2-Propenylanilin 5. Wie unter 1.2 beschrieben, wurden 6,8 g (40 mmol) 14 in methanolischer Kaliumhydroxidlösung isomerisiert. Destillation bei 60-70°/0,02 Torr ergab 6 g (88%) Isomerengemisch als fast farbloses Öl. Zusammensetzung (GC.): 56% (*E*)-5, 28% (*Z*)-5, 6,5% 14 und 5% 3,5-Dimethylanilin. (*E*)- und (*Z*)-5 wurden durch präp. GC. (*Ucon* HB-5100), Chromatographie an Kieselgel mit Pentan/Äther 9:1 und Destillation bei 50-60°/0,003 Torr in Ausbeuten von 29,4 bzw. 13,2% rein erhalten. (*Z*)-5: UV.: 241 sch. (3,86), 296 (3,42); min. 271 (2,90). – IR.: 3475, 3380 (NH₂), 1623 (C=C, konj.), 835 (isol. arom. H), 735 (CH=CH, *cis*). – NMR.: 6,35-6,0 (*m*, 2 arom. H, H–C(1')), 5.81 (*d*×*qa*, *J*=11 und

6,4, H–C(2')), 3,41 (s, H₂N), 2,14 und 2,03 (2 s, H₃C–C(3), –C(5)), 1,50 ($d \times d$, J = 6,4 und 1,4, H₃C–C(2')). – MS.: 161 (M^+ , 100), 146 (59), 134 (18), 131 (20), 130 (16).

 $C_{11}H_{15}N$ (161,24) Ber. C 81,93 H 9,38 N 8,69% Gef. C 81,90 H 9,14 N 8,39%

(*E*)-5: UV.: 225 (4,37), 251 sch. (3,83), 301 (3,43); min. 297 (3,11). – IR.: 3455, 3365 (NH₂), 1618 (C=C, konj.), 978 (CH=CH, *trans*), 833 (isol. arom. H). – NMR.: 6,25 und 6,15 (2 br. s, H–C(4), –C(6)), 6,3-6,05 (teilweise verdecktes br. d, J = 16, H–C(1')), 5,75 ($d \times qa$, J = 16 und 6, H–C(2')), 3,48 (br. s, H₂N), 2,13 (s, H₃C–C(3), –C(5)), 1,89 ($d \times d$, J = 6 und 1,5, H₃C–C(2')). – MS.: 161 (M^+ , 100), 146 (44), 134 (15), 131 (16).

C₁₁H₁₅N (161,24) Ber. C 81,93 H 9,38 N 8,69% Gef. C 82,10 H 9,50 N 8,55%

1.4. 2-(1'-Propenyl)mesitylen (6) [40]. Die Verbindung wurde aus 2,4,6-Trimethyl-benzaldehyd [41] und Äthyltriphenyl-phosphoniumbromid [42] hergestellt (vgl. [42] [43]). Die Rohausbeute nach Destillation bei 65-80°/0,05 Torr betrug 58%. (Z)- und (E)-6 lagen im Verhältnis 1:1 vor und wurden durch präp. GC. (XE-60) in einer Reinheit von 96,8 bzw. 99,3% erhalten. (Z)-6: UV.: 231 sch. (3,82), 266 sch. (2,75). – IR.: 1648 (C=C, konj.), 1614, 1482 (Aromat), 850 (isol. arom. H), 723 (CH=CH, *cis*). – NMR.: 6,71 (s, 2 arom. H), 6,24 (br. d, J = 11, H - C(1')), 5,74 ($d \times qa$, J = 11 und 6,5, H - C(2')), 2,21 (s, $H_3C - C(4)$), 2,10 (s, $H_3C - C(2)$), -C(6)), 1,43 ($d \times d$, J = 6,5 und 1,5, $H_3C - C(2')$). – MS.: 160 (M^+ , 44), 145 (100), 130 (15), 129 (23), 128 (21), 115 (22), 105 (13), 91 (17), 77 (14), 65 (10), 63 (10), 51 (16), 39 (24).

C₁₂H₁₆ (160,26) Ber. C 89,94 H 10,06% Gef. C 90,12 H 10,03%

(*E*)-6: UV.: 240 (3,97). – IR.: 1660 (C=C, konj.), 1614, 1481 (Aromat), 970 (CH=CH, *trans*), 850 (isol. arom. H). – NMR.: 6,73 (*s*, 2 arom. H), 6,30 (br. *d*, J = 16, H–C(1')), 5,60 (*d*×*qa*, J = 16 und 6,5, H–C(2')), 2,25 (*s*, 3 CH₃–Ar), 1,93 (*d*×*d*, J = 6,5 und 1,5, H₃C–C(2')). – MS.: 160 (*M*⁺, 69), 145 (100), 130 (17), 129 (25), 128 (25), 115 (20), 105 (14), 91 (29), 77 (14), 59 (25), 43 (94).

 $C_{12}H_{16}$ (160,26) Ber. C 89,94 H 10,06% Gef. C 89,77 H 10,03%

1.5. 2-(1'-Propenyl)toluol (8) (vgl. [44]). Herstellung wie Verbindung 6 (vgl. 1.4). Ausbeute nach Destillation bei 70-90°/25 Torr 61%. (Z)- und (E)-8, die im Verhältnis von ca. 1:1 gebildet worden waren, wurden durch präp. GC. (XE-60) in einer Reinheit von 99,8 bzw. 99,6% erhalten. (Z)-8: Destillation bei 45-55°/12 Torr. - UV.: 235 (3,87). - IR.: 1648 (C=C, konj.) 1604, 1488 (Aromat), 753 (4 benachb. arom. H), 696 (CH=CH, cis), starke Banden bei 787, 731. - NMR.: 7,04 (m, 4 arom. H), 6,41 (d mit Feinaufspaltung, J=11,5, H-C(1')), 5,74 ($d \times qa$, J=11,5 und 7,0, H-C(2')), 2,21 (s, $H_3C-C(1)$), 1,74 ($d \times d$, J=7,0 und 1,8, $H_3C-C(2')$). - MS.: 132 (M^+ , 51), 131 (17), 117 (100), 115 (37), 105 (12), 91 (37), 77 (15), 65 (17), 63 (16), 51 (23).

C₁₀H₁₂ (132,21) Ber. C 90,85 H 9,15% Gef. C 90,62 H 9,31%

(*E*)-8: Destillation bei 50-60°/12 Torr. - UV.: 246,5 (4,12), 266 sch. (3,70). - IR.: 1656 (C=C, konj.), 1607, 1488 (Aromat), 964 (CH=CH, *trans*), 743 (4 benachb. arom. H). - NMR.: 7,35-6,9 (*m*, 4 arom. H), 6,51 (*d* mit Feinaufspaltung, J = 15,5, H-C(1')), 5,97 (*d*×*qa*, J = 15,5 und 6,5, H-C(2')), 2,27 (*s*, H₃C-C(1)), 1,87 (*d*×*d*, J = 6,5 und 1,5, H₃C-C(2')). - MS.: 132 (*M*⁺, 80), 131 (23), 117 (100), 115 (34), 105 (10), 91 (25).

C₁₀H₁₂ (132,21) Ber. C 90,85 H 9,15% Gef. C 90,92 H 9,26%

1.6. 2-(2'-Deuterio-1'-propenyl)toluol (2'-d-8). Die Verbindung wurde aus 26 g (0,07 mol) 1,1-Dideuterioäthyl-triphenyl-phosphoniumbromid [5] und 8,4 g (0,07 mol) 2-Methylbenzaldehyd hergestellt. Destillation bei 78-87°/24 Torr lieferte 8,4 g (59%) eines Gemisches aus 37,5% 2'-d-(Z)-8 und 57,9% 2'-d-(E)-8 neben nicht identifizierten Nebenprodukten (GC.). Die Isomeren wurden durch präp. GC. (XE-60) aufgetrennt. 2'-d-(Z)-8: Isomerenreinheit (GC.) 99,9%. - IR.: 2240 (=C-D), 1636 (C=C, konj.), 1605, 1486 (Aromat), 742 (4 benachb. arom. H), intensive Bande bei 776. - ¹H-NMR.: 7,02 (m, 4 arom. H), 6,38 (br. s, H-C(1')), 5,72 ($d \times qa$, J = 11,5 und 7,0, Signal der Restprotonen an C(2')), 2,19 (s, H₃C-C(1)), 1,70 (br. s, H₃C-C(2')). - ²H-NMR. (CCl₄): 5,82 (s, D-C(2')). - MS.: 133 (M^+ , 73), 132 (31), 118 (100), 117 (50), 116 (31), 115 (15), 92 (20), 91 (23), 77 (10), 65 (13), 63 (13), 51 (18). -D-Bestimmungen: ¹H-NMR.: 0,90 D an C(2'). Verbrennungsanalyse: 0,85 D/Molekel.

 $C_{10}H_{11}D$ (133,21) Ber. C 90,16% Gef. C 89,95%

2'-d-(*E*)-8: Isomerenreinheit (GC.) 99,4%. - IR.: 2235 (=C-D), 1642 (C=C, konj.), 1605, 1485 (Aromat), 756 (4 benachb. arom. H), intensive Banden bei 895, 727, 678. - ¹H-NMR.: 7,35-6,8 (*m*, 4 arom. H), 6,47 (br. *s*, H-C(1')), 5,96 ($d \times qa$, J = 15,5 und 6,5, Signal der Restprotonen an C(2')), 2,26 (*s*, H₃C-C(1)), 1,85 (br. *s*, H₃C-C(2')). - ²H-NMR. (CCl₄): 6,07 (*s*, D-C(2')). - MS.: 133 (*M*⁺, 94), 132 (35), 118 (100), 117 (52), 116 (31), 115 (16), 92 (18), 91 (20), 77 (11), 65 (12), 63 (12), 51 (16). - D-Bestimmungen: ¹H-NMR.: 0,87 D an C(2'). Verbrennungsanalyse: 0,89 D/Molekel.

$C_{10}H_{11}D$ (133,21) Ber. C 90,16% Gef. C 89,90%

1.7. $4 \cdot (1' - Propenyl)toluol$ (9) (vgl. [44]). Herstellung wie Verbindung 6 (vgl. 1.4). Ausbeute nach Destillation bei 75-95°/15 Torr 70%. Trennung der Isomeren ((E)-9/(Z)-9=2) durch präp. GC. (XE-60). (Z)-9: Isomerenreinheit (GC.) 98,4%. – UV.: 243 (4,21), 247 sch. (4,20), 259 sch. (3,92). – IR.: 1646 (C=C, konj.), 1515 (Aromat), 837, 821 (2 benachb. arom. H), 690 (CH=CH, *cis*). – NMR.: 7,03 (*m*, 4 arom. H), 6,33 (*d* mit Feinstruktur, J = 11,5, H-C(1')), 5,64 ($d \times qa$, J = 11,5 und 7,0, H-C(2')), 2,30 (*s*, H₃C-C(1)), 1,85 ($d \times d$, J = 7,0 und 1,8, H₃C-C(2')). – MS.: 132 (M^+ , 78), 131 (23), 117 (100), 115 (33), 105 (14), 91 (29), 77 (11), 65 (14), 63 (11), 51 (14).

C₁₀H₁₂ (132,21) Ber. C 90,85 H 9,15% Gef. C 90,66 H 9,20%

(*E*)-9: Isomerenreinheit (GC.) 97,6%. - UV.: 248 sch. (4,24), 252 (4,25), 262 sch. (4,09). - IR.: 1663 (C=C, konj.), 1574, 1516 (Aromat), 966 (CH=CH, *trans*), 836 (2 benachb. arom. H), starke Bande bei 780. - NMR.: 7,2-6,85 (*m*, 4 arom. H), 6,29 (teilweise verdecktes br. *d*, J = 16,0, H-C(1')), 6,04 (teilweise verdecktes $d \times qa$, J = 16,0 und 5,5, H-C(2')), 2,28 (*s*, $H_3C-C(1)$), 1,84 *d*, J = 5,5, $H_3C-C(2')$). - MS.: 132 (M^+ , 80), 131 (26), 117 (100), 115 (32), 105 (13), 91 (29), 77 (11), 65 (12), 63 (11), 51 (13).

C₁₀H₁₂ (132,21) Ber. C 90,85 H 9,15% Gef. C 90,80 H 9,36%

1.8. $4 \cdot (2' - Deuterio - 1' - propenyl) toluol (2'-d-9)$. Seine Herstellung erfolgte analog zu 2'-d-8 (vgl. 1.6). Destillation bei 70-90°/22 Torr ergab 5,95 g (64%) eines Gemisches aus 40,2% 2'-d-(Z)-9 und 53,2% 2'-d-(E)-9 neben zwei nicht identifizierten Nebenprodukten (GC.). Die Isomeren wurden durch präp. GC. rein erhalten. 2'-d-(Z)-9: Isomerenreinheit (GC.) 99,9%. - IR.: 2240 (=C-D), 1637 (C=C, konj.), 1617, 1515 (Aromat), 820 (2 benachb. arom. H), intensive Banden bei 904, 745. - ¹H-NMR.: 7,01 (m, 4 arom. H), 6,30 (br. s, H-C(1')), 5,80-5,10 (sehr schwaches m, Restprotonen an C(2')), 2,29 (s, H₃C-C(1)), 1,84 (s, H₃C-C(2')). - ²H-NMR. (CCI₄): 5,72 (s, D-C(2')). - MS.: 133 (M^+ , 85), 132 (29), 119 (14), 118 (100), 117 (26), 116 (26), 115 (12), 105 (12), 92 (16), 91 (21), 77 (11), 65 (12), 63 (15), 51 (15). - D-Bestimmungen: ¹H-NMR.: 0,96 D an C(2'). Verbrennungsanalyse: 1,00 D/Molekel.

C₁₀H₁₁D (133,21) Ber. C 90,16% Gef. C 90,42%

2'-d-(E)-9: Isomerenreinheit (GC.) 99,1%. – IR.: 2240 (=C–D), 1645 (C=C, konj.), 1615, 1514 (Aromat), 816 (2 benachb. arom. H), intensive Banden bei 898, 726, 675. – ¹H-NMR.: 7,2-6,85 (m, 4 arom. H), 6,23 (br. s, H–C(1')), 6,2-5,85 (sehr schwaches m, Restprotonen an C(2')), 2,26 (s, H₃C–C(1)), 1,82 (s, H₃C–C(2')). – ²H-NMR. (CCl₄): 6,15 (s, D–C(2')). – MS.: 133 (M^+ , 81), 132 (34), 119 (14), 118 (100), 117 (26), 116 (25), 115 (11), 105 (11), 92 (14), 91 (20), 51 (11). – D-Bestimmungen: ¹H-NMR.: 0,96 D an C(2'). Verbrennungsanalyse: 0,98 D/Molekel.

$C_{10}H_{11}D$ (133,21) Ber. C 90,16% Gef. C 90,38%

1.9. 2-(1'-Butenyl)mesitylen (7). Die Verbindung wurde aus 2,4,6-Trimethylbenzaldehyd [41] und Propyl-triphenyl-phosphoniumbromid synthetisiert (vgl. [42] [43]). Die Isomeren wurden durch präp. GC. (XE-60) aufgetrennt. (Z)-7: Destillation bei 95-105°/15 Torr. – UV.: 231 sch. (3,67), 265 (2,59). – IR.: 1648 (C=C, konj.), 1614, 1570, 1482 (Aromat) 847 (isol. arom. H), 730 (CH=CH, *cis*). – NMR.: 6,69 (*s*, 2 arom. H), 6,15 (br. *d*, J = 11, H-C(1')), 5,63 ($d \times t$, J = 11 und 7, H-C(2')), 2,21 (*s*, H₃C-C(4)), 2,10 (*s*, H₃C-C(2), -C(6)), 1,80 (*qi*, J = 7, 2 H-C(3')), 0,90 (*t*, J = 7, H₃C-C(3')). – MS.: 174 (M^+ , 61), 160 (14), 159 (100), 145 (15), 144 (19), 143 (9), 133 (10), 129 (17), 128 (16), 119 (10), 115 (11), 105 (10), 91 (10).

C₁₃H₁₈ (174,27) Ber. C 89,58 H 10,42% Gef. C 89,31 H 10,29%

(*E*)-7: Destillation bei 90-100°/12 Torr. - UV.: 240,5 (3,99). - IR.: 1616, 1570, 1482 (Aromat), 849 (isol. arom. H), 968 (CH=CH, *trans*). - NMR.: 6,70 (*s*, 2 arom. H), 6,22 (br. *d*, J = 16, H-C(1')), 5,59 ($d \times t$, J = 16 und 6,5, H-C(2')), 2,3-2,05 (*m* und *s* bei 2,20, 2 H-C(3') und 3 CH₃-Ar), 1,10 (*t*, J = 7,

 $H_3C-C(3')$). - MS.: 174 (M^+ , 64), 160 (18), 159 (100), 145 (21), 144 (25), 143 (11), 133 (12), 132 (13), 129 (23), 128 (22), 120 (19), 119 (21), 115 (17), 105 (29), 91 (20), 77 (14).

C₁₃H₁₈ (174,27) Ber. C 89,58 H 10,42% Gef. C 89,55 H 10,29%

1.10. 2-(2'-Butenyl)mesitylen (10)¹¹). 20,8 g (0,85 mol) Mg-Späne wurden mit 125 g (0,63 mol) 2,4,6-Trimethyl-brombenzol in 100 ml Äther 3 Std. unter Rückfluss erhitzt. Zu dieser Grignard-Lösung wurden während 5 Min. 90 g (0,51 mol) Benzoesäure-(a-methylallyl)ester (hergestellt aus 3-Buten-2-ol und Benzoylchlorid in Gegenwart von Triäthylamin) in 100 ml Äther gegeben und das Gemisch 9 Std. unter Rückfluss gekocht (vgl. [6]). Nach 40stdg. Stehen bei 25° wurde das eisgekühlte Gemisch mit einer eiskalten Lösung von 43,2 g Ammoniumchlorid und 260 ml konz. Salzsäure in 520 ml Wasser versetzt, die organische Phase abgetrennt und die wässerige Phase mehrmals mit Äther ausgeschüttelt. Die vereinigten organischen Phasen wurden eingeengt und zur Verseifung von nicht reagiertem Ester mit 20 g Kaliumhydroxid in 400 ml Äthanol 18 Std. unter Rückfluss erhitzt. Nach Zugabe von 450 ml Wasser wurde die organische Phase abgetrennt und die Alkohol/Wasser-Phase mit Äther extrahiert. Die vereinigten Ätherphasen wurden über Kaliumcarbonat getrocknet, der Äther abgedampft und der Rückstand bei 114-117,5°/14 Torr destilliert: 40,4 g (44,4%) (E)- und (Z)-10, die im Verhältnis von etwa 1:1 gebildet worden waren, und durch präp. GC. (XE-60) und präp. DC. an Kieselgel mit Pentan/Äther 19:1 aufgetrennt wurden. (Z)-10: Destillation bei 40-50°/0,008 Torr, Isomerenreinheit (GC.) 99,7%. -1R. (CCl₄; CS₂): 1645 (C=C), 848 (isol. arom. H), 670 (CH=CH, cis). - NMR.: 6,67 (s, 2 arom. H), 5,6-5,0 (m, H-C(2'), -C(3')), 3,25 (br. d, J=6, 2 H-C(1')), 2,19 (s, 3 CH₃-Ar), 1,73 (d mit Feinstruktur, $J = 6, H_3C - C(3')$. - MS.: 174 (M^+ , 56), 160 (13), 159 (100), 145 (13), 144 (18), 133 (17), 132 (15), 129 (15), 128 (15), 120 (14), 119 (11), 117 (11), 115 (15), 105 (13), 91 (18), 77 (12).

C13H18 (174,27) Ber. C 89,58 H 10,42% Gef. C 89,40 H 10,29%

(*E*)-10: Destillation bei 40-50°/0,008 Torr; 95,7% (*E*)-10, 0,5% (*Z*)-10, 3,8% nicht identifizierte Produkte. - IR. (CCl₄; CS₂): 1640 (C=C), 961 (CH=CH, *trans*), 847 (isol. arom. H). - NMR.: 6,67 (*s*, 2 arom. H), 5,6-5,0 (*m*, H-C(2'), -C(3')), 3,25-3,15 (*m*, 2 H-C(1')), 2,18 (*s*, 3 CH₃-Ar), 1,59 (*d* mit Feinstruktur, $J = 5,5, H_3C-C(3')$). - MS.: 174 (M^+ , 63), 160 (15), 159 (100), 145 (14), 144 (16), 133 (12), 132 (13), 129 (12), 128 (11), 120 (10), 119 (10), 115 (11), 91 (12).

C13H18 (174,27) Ber. C 89,58 H 10,42% Gef. C 89,28 H 10,40%

2. Thermische Umlagerungen. - 2.1. Kinetik der thermischen Umlagerung von (Z)-3,5-Dimethyl-2-(l'-propenyl)phenol ((Z)-3). 23 mg (Z)-3 wurden in 2 g Decan gelöst und 17 mg Hexamethylbenzol als interner Standard zugegeben (5,14 · 10⁻²M Stammlösung). Je 0,05 ml dieser Lösung wurden bei 10⁻³ Torr in Pyrexbömbchen eingeschmolzen und auf 130,0, 140,0 bzw. 150,0° erhitzt. Bei jeder Temperatur wurden 9-12 Proben erhitzt und mittels GC. analysiert. Zur Bestimmung der Gleichgewichtskonzentrationen wurden Proben von (Z)- und (E)-3 parallel erhitzt. Die Geschwindigkeitskonstanten wurden aus der Beziehung für eine Gleichgewichtsreaktion 1. Ordnung, $(k(E)+k(Z)) \cdot t=\ln(([E_o]-[E_e])/([E]-[E_e]))$ oder der entsprechenden Gleichung für die (Z)-Form, wobei $k(E)/k(Z)=[Z_e]/[E_e]$, berechnet¹²). Für diese Berechnungen sowie zur Ermittlung der Aktivierungsparameter aus der Arrhenius-Beziehung wurden Korrelations-/Regressions-Programme verwendet (vgl. allgem. Bemerkungen). Die Ergebnisse sind in Tab. 1 zusammengefasst.

Kontrollexperimente¹³). Beim Erhitzen von (E)-3 ($5,14 \cdot 10^{-2}$ M in Decan) in Weichglasbömbchen oder bei Thermolyseversuchen mit 10fach kleineren Substanzkonzentrationen wurde die gleiche Umlagerungsgeschwindigkeit wie in den obigen Experimenten bestimmt.

2.2. Umlagerung von N-Methyl-2-(l'-propenyl)anilin (4). 2.2.1. Präparative Umlagerung von N-d-(E)-4. 900 mg (5,2 mmol) (E)-4 in 25 ml abs. Äther wurden 5mal mit je 2 ml D₂O (99,7%) ausgeschüttelt. Die so behandelte Ätherphase wurde sofort durch frisch ausgeglühtes Natriumsulfat in ein mit D₂O ausgedämpftes Bombenrohr filtriert. Bei vermindertem Druck wurde der Äther unter Feuchtigkeitsausschluss sorgfältig abgedampft. Der Rest des Lösungsmittels wurde i.HV. entfernt. Nach Zugabe von 18 ml frisch destilliertem Decan und 3maligem Entgasen bei 10^{-2} Torr wurde das Bombenrohr abgeschmolzen und 8,5 Std. auf 220° erhitzt. Im GC. trat neben dem Pik von (E)-4 (89%) nur der von

¹¹) Wir danken Herrn Dr. W. Frei für experimentelle Mitarbeit bei der Synthese.

¹²) Vgl. Tab. 1.

¹³) Details siehe [45].

(Z)-4 (11%) auf. Das Isomerengemisch wurde isoliert und durch präp. GC. (Ucon) aufgetrennt. Partiell deuteriertes (E)-4: 680 mg (76%) nach Destillation bei 65-80°/0,02 Torr. - NMR. (vgl. Tab. 8): 7,15-6,9 (m, H-C(3), -C(5)), 6,7-6,3 (teilweise verdecktes m, H-C(4), -C(6)), 6,4-6,15 (br., teilweise verdecktes d mit einer weiteren, schwach erkennbaren Linie bei 6,30, J = 15,5, H-C(1')), 5,91 ($d \times qa$, J = 15,5 und 6, Restprotonen an C(2'), vgl. Tab. 8), 3,57 (br. s, HN), 2,71 (s, CH₃N), 1,83 ($d \times d$, J = 6 und 1,5, H₃C-C(2')).

Tabelle 8. NMR.-Integrationswerte von deuteriertem (E)- und (Z)-4 aus dem Erhitzen von N-d-(E)-4

H-Stellung	(<i>E</i>)- 4 ^a)	(Z)- 4 ^a)
C(3) und C(5)	2,00	2,00
C(4) und C(6)	2.00	1,91
C(1')	2,99	0,93
C(2')	0,72	0.53
C(3')	3,02	2,94 ^b)
C(N)	2,97°)	2,94 ^b)

a) Mittel von 15 Einzelintegrationen; als Standard diente H--C(3), -C(5).

^b) Mittel von 3 Integrationen.

c) Mittel von 5 Integrationen.

Partiell deuteriertes (Z)-4: 36 mg (4%) nach Destillation bei 55-70°/0,01 Torr. - NMR. (vgl. Tab. 8): 7.2-6.8 (m, H-C(3), -C(5)), 6,7-6.4 (m, H-C(4), -C(6)), 6,19 (m, H-C(1')), 6,0-5.6 ($d \times qa, J = 11$ und 6,5, Restprotonen an C(2'), vgl. Tab. 8), 3,55 (br. s, HN), 2,80 (s, CH₃N), 1,69 (schmales m, H₃C-C(2')).

2.2.2. Kinetik der thermischen Umlagerung von (Z)- bzw. (E)-4. Vgl. 2.1. Stammlösungen $(1,29\cdot10^{-2}M)$: 25 mg (Z)-4 und 22 mg Hexamethylbenzol (GC.-Standard) in 9,6 g Decan bzw. 22 mg (E)-4 und 19 mg Hexamethylbenzol in 8,4 g Decan. Umlagerung bei 220,0 (ausgehend von (Z)-4), 230,0 (ausgehend von (Z)- und (E)-4) bzw. 240,0° (ausgehend von (Z)-4) verfolgt, wobei bei jeder Reaktionsdauer zwei Proben parallel erhitzt wurden. Resultate: Siehe Tab. 2.

Kontrollexperimente¹³). Proben der Stammlösung von (Z)-4 (5,14 · 10⁻²M) wurden parallel mit solchen, die 10fach verdünnt waren (5,14 · 10⁻³M), auf 241° erhitzt; die ermittelten Umlagerungsgeschwindigkeiten waren innerhalb der Fehlergrenzen identisch. Aus der Erhitzung von (Z)-4 (1,29 · 10⁻²M, Decanlösung) in Weichglasbömbchen bei 230° wurden folgende Geschwindigkeitskonstanten erhalten: $k(Z, 230°) = (1,33\pm0,02) \cdot 10^{-5} \text{ s}^{-1}$, $k(E, 230°) = (0,62\pm0,01) \cdot 10^{-5} \text{ s}^{-1}$; $k(Pyrex)/k(Weichglas) = 1,06\pm0,04$ (vgl. Tab. 2).

2.2.3. Erhitzen von N,N-Dimethyl-2-(1'-propenyl)anilin (15). Vgl. 2.1. Stammlösungen $(1,29 \cdot 10^{-2}$ M): 5,4 mg (Z)-15 und 3,2 mg Tetradecan (Standard) in 1,88 g Decan bzw. 6,5 mg (E)-15 und 4,6 mg Tetradecan in 2,26 g Decan. Produktzusammensetzungen nach 24 Std. Erhitzen von je zwei Proben in Pyrexbömbchen auf 240°: 92,4±0,9% (Z)-15 und 7,6±0,9% (E)-15 (ausgehend von (Z)-15; ursprünglicher Anteil an (E)-Isomer 1,7%) bzw. 98,4±0,3% (E)-15 und 1,6±0,3% (Z)-15 (ausgehend von (E)-15; ursprünglicher Anteil an (Z)-Isomer 0,4%). Die 24stdg. Erhitzung von (Z)-15 in Gegenwart von 1 Mol-Äquiv. N-Methylanilin ergab ein Isomerengemisch von 92,7±0,4% (Z)-15 und 7,3±0,4% (E)-15.

2.3. Kinetik der thermischen Umlagerung von 3,5-Dimethyl-2-(1'-propenyl)anilin (5). Vgl. 2.1. Stammlösungen $(5,14 \cdot 10^{-2} \text{m})$: 25 mg (Z)-5 und 19 mg Hexamethylbenzol (Standard) in 2,2 g Decan bzw. 26 mg (E)-5 und 20 mg Hexamethylbenzol in 2,3 g Decan. Umlagerung (ausgehend von (Z)-5) bei 230,0, 240,0 bzw. 250,0°. Ergebnisse siehe Tab. 3.

Kontrollexperimente¹³). Proben der Stammlösung von (Z)-5 (5,14 · 10⁻²M) wurden parallel mit solchen, die 10mal verdünnter (5,14 · 10⁻³M) waren, auf 241° erhitzt. Die daraus bestimmten Geschwindigkeitskonstanten waren innerhalb der Fehlergrenzen identisch. Aus dem Erhitzen von (Z)-5 (5,14 · 10⁻²M) in Weichglasbömbchen bei 240° wurden folgende Geschwindigkeitskonstanten ermittelt: $k(Z, 240^\circ) = (1,49 \pm 0,03) \cdot 10^{-5} \text{ s}^{-1}, k(E, 240^\circ) = (1,42 \pm 0,02) \cdot 10^{-5} \text{ s}^{-1}; k(\text{Pyrex})/k(\text{Weichglas})$ $= 0,99 \pm 0.06$ (vgl. Tab. 3).

2.4. Umlagerung von 2-(1'-Propenyl)mesitylen (6). 2.4.1. Kinetik der thermischen Umlagerung von (Z)-6. Vgl. 2.1. Stammlösungen $(5,14 \cdot 10^{-2}M)$: 20 mg (Z)-6 und 15 mg Pentadecan (Standard) in 1,8 g Decan bzw. 6,7 mg (E)-6 und 5,0 mg Pentadecan in 455 mg Decan. Umlagerungen in Pyrexbömbchen

2056

bei 358,5, 368,0 bzw. 378,0°¹⁴) (Temp.konstanz $\pm 0,5^{\circ}$), Resultate siehe Tab. 4. Nach 45stdg. Erhitzen (ca. 15 $\tau_{1/2}$ der (E),(Z)-Isomerisierung) auf 368° wurde in den Proben aus (Z)-6 wie auch aus (E)-6 folgende Produktzusammensetzung ermittelt (GC.): 35,4% (Z)-6, 40,7% (E)-6 und 21,3% 2,4,6-Trimethylindan (17), das durch seine Retentionszeit sowie sein MS. (aus GC./MS.-Kopplung) charakterisiert wurde (vgl. 2.4.2). 2-Allylmesitylen (18) (vgl. 2.4.3) sowie die Spaltprodukte Mesitylen und 1,2,3,5-Tetramethylbenzol waren zu weniger als 0,5% entstanden, wie durch Vergleich mit authentischem Material im GC. gezeigt wurde. 5,7-Dimethyl-1,2,3,4-tetrahydronaphthalin sowie 5,7-Dimethyl-1,2-dihydronaphthalin [15] konnten gas-chromatographisch nicht nachgewiesen werden.

2.4.2. Synthese von 2,4,6-Trimethylindan (17). In Analogie zu [46] wurden 4,2 g (31 mmol) 3,5-Dimethylbenzaldehyd mit 4,5 g (25 mmol) 2-Brompropionsäuremethylester (*Fluka*) und 2,0 g (31 mmol) Zinkstaub umgesetzt. Nach üblicher Aufarbeitung und Destillation bei 100-120°/0,03 Torr wurde ein (3:4)-Gemisch der beiden Diastereomeren von 3-Hydroxy-2-methyl-3-(3',5'-dimethylphenyl)propionsäure-äthylester in einer Ausbeute von 78% erhalten. 1,6 g (6,8 mmol) Estergemisch wurden mit 2 g 85proz. Phosphorsäure 2 Std. auf 120° erhitzt (vgl. [13]). Nach dem Erkalten wurde das Gemisch in Eiswasser aufgenommen und das Produkt mit Äther extrahiert. Präp. DC. an Kieselgel mit Hexan/Äthylacetat 9:1 und Destillation bei 90-100°/0,03 Torr ergaben 1,1 g (74,5%) 3-(3',5'-Dimethylphenyl)-2-methyl-2-propensäure-äthylester. – UV. (Äthanol): 272 (4,23). – IR.: 1708 (CO, Ester), 1637 (C=C, konj.), 1604, 1480 (Aromat), 1240, 1112 (C=O), 848 (isol. arom. H). – NMR.: 7,53 (br. s, H-C(3)), 6,9 (s, H-C(2'), -C(6')), 6,83 (s, H-C(4')), 4,17 (qa, J=7, CH_3CH_2O), 2,27 (s, H_3C-C(3'), -C(5')), 2,04 (s mit Feinstruktur, $J \approx 1,5$, H₃C-C(2)), 1,30 (t, J=7, CH₃CH₂O).

$$C_{14}H_{18}O(218,29)$$
 Ber. C 77,03 H 8,31% Gef. C 76,92 H 8,18%

Hydrierung von 610 mg (2,8 mmol) des obigen Propensäureesters mit 5proz. Pd/C in Äthanol ergab 520 mg (84,5%) 3-(3',5'-Dimethylphenyl)-2-methylpropionsäure-äthylester, von dem 490 mg (2,2 mmol) mit 400 mg Natriumhydroxid in 10 ml 20proz. wässerigem Äthanol 15 Std. unter Rückfluss gekocht wurden. Übliche Aufarbeitung und Destillation bei 110-120°/0,001 Torr ergaben 240 mg (56%) 3-(3',5'-Dimethylphenyl)-2-methyl-propionsäure. – IR. (CCl₄): 3000 (br., COOH), 1760, 1700 (COOH monomer und dimer), 1609 (Aromat), 849 (isol. arom. H). – NMR. (60 MHz): 12,06 (s, COOH), 6,70 (s, 3 arom. H), 3,15-2,35 (m, H-C(2), 2 H-C(3)), 2,23 (s, H₃C-C(3'), -C(5')), 1.09 (d, J = 6, H₃C-C(2)).

C₁₂H₁₆O₂ (192,25) Ber. C 74,96 H 8,38% Gef. C 75,24 H 8,56%

140 mg (0,73 mmol) der Säure wurden mit 3 g Polyphosphorsäure unter Rühren 5 Min. auf 110-120° erhitzt. Nach üblicher Aufarbeitung und Destillation bei 60-80°/0,001 Torr wurden 115 mg (90%) 2,5,7-Trimethyl-1-indanon erhalten. – IR.: 1700 (CO), 1610, 1595 (Aromat), 847 (isol. arom. H). – NMR. (60 MHz): 7,05-6,65 (2 arom. H), 3,6-2,9 (m, H-C(2)), 2,85-2,15 (m, 2 H-C(3)), 2,53 und 2,38 (2 teilweise überdeckte s, H₃C-C(5), -C(7)), 1,21 (d, J=6,5, H₃C-C(2)). – MS.: 174 (M^+ , 65), 159 (100), 146 (10), 131, (13), 115 (14).

110 mg (0,63 mmol) des Indanons wurden mit Lithiumaluminiumhydrid in Äther reduziert, das Indanol mit 85proz. Phosphorsäure dehydratisiert (vgl. [13]) und das entstandene 2,5,7-Trimethyl-1-inden mit 40 mg Pd/C (5%) in 10 ml Äthanol hydriert. Destillation bei 90-105°/12 Torr ergab 72 mg 2,4,6-Trimethylindan (17). – IR.: 1617, 1598, 1481 (Aromat), 874 (isol. arom. H). – NMR. (60 MHz): 6,66 und 6,61 (2 br. s, 2 arom. H), 3,2-2,2 (m, H-C(2), 2 H-C(1), -C(3)), 2,22 und 2,14 (2 s, H₃C-C(4), -C(6)), 1,10 (d, J = 5,5, H₃C-C(2)). – MS.: 160 (M^+ , 52), 159 (13), 146 (11), 145 (100), 129 (11), 128 (11).

$$C_{12}H_{16}$$
 (160,26) Ber. C 89,94 H 10,06% Gef. C 89,65 H 10,06%

2.4.3. 2-Allylmesitylen (18) wurde in Analogie zu [6] aus Benzoesäure-allylester (vgl. [47]) und 2,4,6-Trimethyl-brombenzol hergestellt (vgl. auch 1.10). Ausbeute nach Destillation bei 89–91°/14 Torr 36%. - IR.: 1635 (C=C), 1612, 1575, 1482 (Aromat), 985, 905 (CH=CH₂), 848 (isol. arom. H). - NMR. (60 MHz): 6,71 (s, 2 arom. H), 6,2-5,5 (m, H-C(2')), 5,05-4,5 (m, 2 H-C(3')), 3,25 ($d \times t$, J = 5,5 und 2, 2 H-C(1')), 2,18 (s, 3 CH₃-Ar).

C₁₂H₁₆ (160,26) Ber. C 89,94 H 10,06% Gef. C 90,02 H 10,09%

¹⁴) Es lässt sich abschätzen, dass bei 380° Substanz und Decan vollständig verdampft sind, wobei der Decandruck etwa 7 atm und der Substanzpartialdruck etwa 65 Torr beträgt. 2.4.4. Kontrollexperimente¹³). Erhitzen von (Z)-6 $(5,14 \cdot 10^{-2} \text{m})$ in Gegenwart von Hydrochinon oder Diphenylamin ergab die gleiche Produktzusammensetzung wie parallel erhitzte Proben ohne Zusatz. Ebenso wurde beim Erhitzen von (Z)-6 in Weichglasbömbchen¹⁵) oder bei Thermolyseversuchen mit 10fach kleineren Substanzkonzentrationen keine signifikant verschiedene Umlagerungsgeschwindigkeit festgestellt. 2,4,6-Trimethylindan (17) ist unter den Umlagerungsbedingungen für (Z)-6 thermisch stabil.

2.5. Umlagerung von 2-(1'-Propenyl)toluol (8). 2.5.1. Präparative Umlagerung von 2'-d-(Z)-8. Je 250 bis 300 mg 2'-d-(Z)-8 in der 10fachen Menge Decan wurden in Weichglasbomben 40 bzw. 160 Min. auf 370° erhitzt. Dabei entstand 2'-d-(E)-8 zu 13,5 bzw. 33,6%. (Z)- und (E)-8 wurden durch präp. GC. (XE-60) aufgetrennt. 2'-d-(Z)-8: D-Gehalt aus ¹H-NMR.: 0,89 D an C(2'). Verbrennungsanalyse: 0,86 D/Molekel (vgl. 1.6). - ²H-NMR. (CCl₄): 5,82 (s, D-C(2')).

2'-d-(E)-8: D-Gehalt aus ¹H-NMR.: 0,78 D an C(2'); innerhalb der Fehlergrenzen der Integration keine Intensitätsänderungen der anderen Signale im Vergleich zum Spektrum von 2'-d-(E)-8 aus der Synthese. Verbrennungsanalyse: 0,92 D/Molekel (vgl. 1.6). – ²H-NMR. (CCl₄): 6,07 (s, D-C(2')), 2.34 (s, CH₂D-C(1)), vgl. Fig. Relative D-Verteilung: $88 \pm 2\%$ D an C(2'), $12 \pm 2\%$ D in CH₃-C(1).

2.5.2. Geschwindigkeitskonstanten der thermischen Isomerisierung von 8 bei 367,5°. Stammlösungen $(5,14\cdot10^{-2}M)$: 55,4 mg (Z)-8 und 36 mg Tridecan (Standard) in 5,95 g Decan bzw. 35,3 mg (E)-8 und 23 mg Tridecan in 3,80 g Decan. Umlagerung in Weichglas- und Pyrexbömbchen. Resultate siehe Tab. 5.

2.5.3. Kontrollexperimente¹³). Während bei den Versuchen mit (Z)-8 in Weichglasbömbchen ein Zusatz von 5 Mol.-Äquiv. Diphenylamin keinen Einfluss auf die Umlagerungsgeschwindigkeit ausübte, wurde diese in Pyrexbömbchen bei einem entsprechenden Diphenylamin-Zusatz um ca. 30% herabgesetzt. Versuche mit Stammlösung von (Z)-8 $(5,14 \cdot 10^{-2} \text{M})$ und mit 10fach verdünnter Lösung $(5,14 \cdot 10^{-3} \text{M})$ in Weichglasbömbchen bei 367,5° ergaben die gleichen Produktzusammensetzungen.

2.6. Umlagerung von 4-(1'-Propenyl)toluol (9). 2.6.1. Präparative Umlagerung von 2'-d-(Z)-9. 250 mg 2'-d-(Z)-9 in der 10fachen Menge Decan wurden in einer Weichglasbombe 160 Min. auf 370° erhitzt. Das Produktgemisch aus 37% 2'-d-(Z)-9 und 63% 2'-d-(E)-9 wurde durch präp. GC. (XE-60) aufgetrennt. (Z)-Isomer: D-Gehalt aus ¹H-NMR.: 0,95 D-C(2'). Verbrennungsanalyse: 0,93 D/Molekel (vgl. 1.8). – ²H-NMR. (CCl₄): 5,72 (s, D-C(2')).

(E)-Isomer: D-Gehalt aus ¹H-NMR.: 0.93 D-C(2'). Verbrennungsanalyse: 0.98 D/Molekel (vgl. 1.8). – ²H-NMR. (CCl₄): 6.15 (s, D–C(2')).

2.6.2. Kinetik der thermischen Umlagerung von (Z)- und (E)-9. Vgl. 2.1. Stammlösungen $(5,14 \cdot 10^{-2} \text{M})$: 51,4 mg (Z)-9 und 31,4 mg Tridecan (Standard) in 5,53 g Decan bzw. 27,3 mg (E)-9 und 17,9 mg Tridecan in 2,94 g Decan. Umlagerung in Weichglasbömbchen bei 360,0 (ausgehend von (Z)-9), 370,0 (ausgehend von (Z)- und (E)-9) bzw. 380,0° (ausgehend von (Z)-9). Resultate siehe Tab. 5. Die kinetischen Daten aus den Erhitzungen in den Pyrexbömbchen sind in Tab. 9 zusammengefasst.

2.6.3. Kontrollexperimente¹³). Während bei der thermischen Umlagerung von (Z)-9 (5,14 · 10⁻²M in Decan) in Weichglasbömbchen ein Diphenylamin-Zusatz (5 Mol.-Äquiv.) keinen Einfluss auf die Reaktionsgeschwindigkeit ausübte, wurde diese in Pyrexbömbchen bei einem Zusatz von 5 Mol.-Äquiv. Hydrochinon bzw. Diphenylamin um ca. 15 bzw. 37% herabgesetzt. Die Isomerisierungsgeschwindigkeit von (Z)-9 bei drei verschiedenen Konzentrationen (5,14 · 10⁻¹ bis 5,14 · 10⁻³M) in Weichglasbömbchen bei 370° war innerhalb der Fehlergrenzen identisch.

2.7. Umlagerung von 2-(1'-Butenyl)mesitylen (7). 2.7.1. Geschwindigkeitskonstante der thermischen (E).(Z)-Isomerisierung von 7 in Pyrexbömbchen bei 367°. Stammlösungen $(5,14 \cdot 10^{-2} \text{M})$: 14,0 mg (Z)-7 und 10 mg Hexamethylbenzol (Standard) in 1,15 g Decan bzw. 7,0 mg (E)-7 und 5 mg Hexamethylbenzol in 0,57 g Decan. Umlagerung, ausgehend von (Z)-7, in Pyrexbömbchen. Resultate siehe Tab. 4.

2.7.2. Bestimmung der Produktzusammensetzung aus der Umlagerung von (Z)- bzw. (E)-7. Nach 24stdg. Erhitzen von (Z)- bzw. (E)-7 ($5,14 \cdot 10^{-2}$ M, Decan) wurden die Lösungen gas-chromatographisch analysiert. Die Produkte Mesitylen, 1,2,3,5-Tetramethylbenzol, (Z)-7, (E)-7, (Z)- und (E)-10 sowie 2-Äthyl-4,6-dimethylindan (19) und 2,5,7-Trimethyl-1,2,3,4-tetrahydronaphthalin (20) wurden durch

¹⁵) Nach 1 Std. Erhitzen von Methylidencyclohexan in Decan in Pyrexbömbchen auf 360° wurden im Reaktionsgemisch 92% 1-Methylcyclohexen nachgewiesen (GC.), während unter gleichen Bedingungen in Weichglasbömbchen keine Isomerisierung auftrat (vgl. [12]).

Temp. (°)	(<i>E</i>)- 9 (Gl.) (%)	(Z)- 9 (Gl.) (%)	K(E/Z)	$k(E) \cdot 10^{5b})^{c}$ (s ⁻¹)	$k(Z) \cdot 10^{5b})^{c}$ (s ⁻¹)
357,5	77,9 ^d) 77,8 ^d)	22,1 22,2	3,51	0,53±0,01	1,88±0,03
367,5	77,9 76,9	22,1 23,1	3,42 (-1,57) ^e)	0,86±0,02	$0,96 \pm 0,05$
377,5	77,5 76,8	22,5 23,2	3,38	1,65±0,04	5,48±0,11
$\Delta H_{367,5^{\circ}}^{\neq}$ $\Delta S_{367,5^{\circ}}^{\neq}$	(kcal/mol) (e.u.)			$44,7 \pm 4,1$ - 13,3 ± 1,5	$42,3 \pm 3,9 \\ -14,6 \pm 1,4$

Tabelle 9. Thermische (E), (Z)-Isomerisierung von 4-(1'-Propenyl)toluol (9) in Decan in Pyrexbömbchen^a)

a) $5,14 \cdot 10^{-2}$ M Lösung von (Z)-9 in Decan mit Tridecan als Standard.

b) Vgl. Fussnote a) zu Tab. 1.

c) k-Werte bestimmt aus Experimenten mit (Z)-9.

d) 1. Zeile: Werte aus $(E) \rightarrow (Z)$; 2. Zeile: Werte aus $(Z) \rightarrow (E)$.

e) $\Delta G(E/Z)$ in kcal/mol.

Vergleich mit authentischem Material im GC. identifiziert. Das neben (Z)- und (E)-7 zur Hauptsache entstandene Produkt 19 konnte zudem durch Vergleich der MS. aus GC./MS.-Experimenten identifiziert werden. Ergebnisse siehe Tab. 6.

2.7.3. Kontrollexperimente¹³). Bei Versuchen mit (Z)-7 $(5,14 \cdot 10^{-2} \text{M in Decan})$ mit oder ohne Hydrochinonzusatz (5 Mol.-äquiv.) in Pyrexbömbchen bzw. mit oder ohne Diphenylaminzusatz (5 Mol.-Äquiv.) in Pyrex- und Weichglasbömbchen wurden Umlagerungsgeschwindigkeiten ermittelt, die alle innerhalb der Fehlergrenzen identisch waren.

2.8. Umlagerung von 2-(2'-Butenyl)mesitylen (10). 2.8.1. Präparative thermische Umlagerung eines (E),(Z)-Gemisches von 10. 7 g eines 1:1-Gemisches von (Z)- und (E)-10 wurden in Substanz in einem Bombenrohr bei 0,015 Torr 30 Tage auf 300° erhitzt. In der braunen, öligen Mischung wurden folgende Produkte identifiziert: <0.5% (Z)- und (E)-10, <0.5% (Z)- und (E)-7, 43% 1,2,3,5-Tetramethylbenzol und 30,4% 2-Äthyl-4,6-dimethylindan (19). 1,2,3,5-Tetramethylbenzol und 19 wurden durch präp. GC. (XE-60) in Ausbeuten von 24,4 bzw. 17,3% isoliert. 1,2,3,5-Tetramethylbenzol: Destillation bei 70-90°/15 Torr. Identifikation durch spektroskopischen Vergleich mit authentischem Material.

2- \ddot{A} thyl-4,6-dimethylindan (19): Destillation bei 100-110°/15 Torr. - IR.: 1613, 1590, 1479 (Aromat), 844 (isol. arom. H). - NMR.: 6,67 und 6,58 (2 s, 2 arom. H); 3,05-2,7 (m, 1 H-C(1) und -C(3) trans zu CH₃CH₂C(2)), 2,25-2,0 (m mit 2 s bei 2,20 und 2,12, 1 H-C(1) und -C(3) cis zu CH₃CH₂C(2), H₃C-C(4), -C(6)), 1,7-1,2 (m, CH₃CH₂, H-C(2)), 0,96 (t, J=7, CH₃CH₂). - MS.: 174 (M^{+} , 100), 173 (18), 160 (15), 159 (99), 146 (14), 145 (100), 144 (16), 143 (12), 141 (11), 134 (11), 133 (35), 132 (19), 131 (12), 130 (16), 129 (30), 128 (32), 127 (11), 120 (16), 119 (40), 117 (15), 115 (17), 106 (15), 105 (41), 91 (45), 77 (20).

C13H18 (174,27) Ber. C 89,58 H 10,42% Gef. C 89,50 H 10,76%

2.8.2. Synthese von 1-Äthylindan. Durch Grignard-Reaktion von 1-Indanon (Fluka) mit Äthylmagnesiumbromid in Äther wurde 1-Äthyl-1-indanol erhalten [17]. Dieses wurde mit p-Toluolsulfonsäure 15 Min. auf 140° erhitzt und das gebildete Wasser abdestilliert. Destillation bei 98°/11 Torr ergab 2,1 g (37%) 1-Äthylinden, das mit 1 g 10proz. Pd/C in 50 ml Äthanol hydriert wurde. 1-Äthylindan wurde in einer Reinheit von 95,5% erhalten. – IR.: 1610, 1592, 1482 (Aromat), 758, 748, 738 (4 benachb. arom. H). – NMR.: 7,04 (s, 4 arom. H), 3,2-2,65 (m, H-C(1), 2 H-C(3)), 2,6-1,2 (m, 2 H-C(2), CH₃CH₂), 0,96 (t mit Feinstruktur, J = 7, CH₃CH₂). – MS.: 146 (M^+ , 20), 131 (1), 118 (12), 117 (100), 115 (17).

C₁₁H₁₄ (146,11) Ber. C 90,34 H 9,66% Gef. C 89,75 H 9,52%

2.8.3. Erhitzen von 2-(2'-Butenyl)mesitylen (10) auf 367° . 16 mg (Z)-10 und 11 mg Hexamethylbenzol (Standard) in 1,3 g Decan bzw. 12 mg (E)-10 und 8,5 mg Hexamethylbenzol in 0,98 g Decan.

Proben von (Z)- und (E)-10 wurden in Pyrexbömbchen 24 Std. auf 367° erhitzt. Die Produkte wurden durch GC.-Vergleich mit authentischen Proben identifiziert (vgl. 2.7.2). Die Hauptprodukte 19, 20 (vgl. 2.8.4) und 1,2,3,5-Tetramethylbenzol wurden zudem durch Vergleich der MS. aus GC./MS.-Experimenten identifiziert. Ergebnisse siehe Tab. 6.

Beim Erhitzen von (E)-10 $(5,14 \cdot 10^{-2} \text{M}$ in Decan) in Gegenwart von 1 Mol.-Äquiv. meso-2,3-Diphenylbutan (hergestellt durch reduktive Dimerisierung von (\pm) -1-Phenyläthanol (*Fluka*) mit Zink in HBr/Eisessig, vgl. [16]) während 1 Std. auf 367° wurde von den Hauptprodukten 19, 20 und 1,2,3,5-Tetramethylbenzol *ca.* 9, 14 bzw. 10mal mehr gebildet als beim Parallelexperiment ohne Zusatz von *meso*-2,3-Diphenylbutan. Bei 24stdg. Erhitzen von 20 $(5,14 \cdot 10^{-2} \text{M})$ in Decan mit Hexadecan als Standard) auf 367° änderte sich das Substanz/Standard-Verhältnis nicht.

2.8.4. Synthese von 2,5,7-Trimethyl-1,2,3,4-tetrahydronaphthalin (20). 940 mg (5 mmol) 2,5,7-Trimethyl-1,2,3,4-tetrahydronaphthalin-1-on (hergestellt durch Methylierung von 5,7-Dimethyl-1,2,3,4-tetrahydronaphthalin-1-on (Schuchardt), vgl. [15]) wurden nach Wolff-Kishner reduziert (vgl. [48]). Nach üblicher Aufarbeitung und Destillation bei 110-120°/11 Torr wurden 740 mg (85%) reines 20 als farbloses Öl erhalten. – NMR. (60 MHz, CCl₄): 6,62 und 6,57 (2 br., teilweise überlagerte s, 2 arom. H), 2,95-1,2 (13 H, wovon 4 H im Bereich 2,95-2,25, 2 s bei 2,19 und 2,11, 2 H-C(1), -C(4), 1 H-C(2), 2 H-C(3), H₃C-C(5), -C(7)), 1,01 (d, $J = 5,5, H_3C-C(2)$). – MS.: 174 (M^+ , 85), 159 (100), 132 (69).

C₁₃H₁₈ (174,27) Ber. C 89,58 H 10,42% Gef. C 89,75 H 10,45%

LITERATURVERZEICHNIS

- a) H.-J. Hansen, Helv. 60, 2007 (1977); vgl. auch b) H.-J. Hansen & H. Schmid, Chimia 23, 190 (1969) und c) H.-J. Hansen in B.S. Thyagarajan's 'Mechanisms of Molecular Migrations', Wiley-Interscience, New York 1971, Vol. 3, S. 177.
- [2] L. Pauling, 'The Nature of the Chemical Bond', Oxford University Press, London 1952, S. 53, 131; T. L. Cottrell, 'The Strengths of Chemical Bonds', Butterworth, London 1954; J. March, 'Advanced Organic Chemistry', McGraw-Hill Kogakusha, Ltd., Tokyo 1968, S. 26; J. B. Hendrickson, D. J. Cram & G. S. Hammond, 'Organic Chemistry', McGraw-Hill Book Company, New York 1970, S. 63.
- [3] D. S. Tarbell, Org. Reactions 2, 1 (1944).
- [4] M. Schmid, H.-J. Hansen & H. Schmid, Helv. 56, 105 (1973).
- [5] H. Heimgartner, H.-J. Hansen & H. Schmid, Helv. 55, 1385 (1972).
- [6] R. T. Arnold, R. W. Liggett & S. Searles, jr., J. Amer. chem. Soc. 70, 3938 (1948).
- [7] L. J. Bellamy, 'Advances in Infrared Group Frequencies', Methuen & Co., London 1968, S. 246; N. B. Colthup, L. H. Daly & S. E. Wiberley, 'Introduction to Infrared and Raman Sepctroscopy', Academic Press, New York 1975.
- [8] A. W. Baker & A. T. Shulgin, Spectrochim. Acta 20, 153 (1964).
- [9] M. Ōki, H. Hosoya & H. Iwamura, Bull. chem. Soc. Japan 34, 1391 (1961).
- [10] W. Beckering, J. phys. Chemistry 65, 206 (1961).
- [11] M. Ōki & K. Mukai, Bull. chem. Soc. Japan 33, 784 (1960).
- [12] W. v. E. Doering & G. H. Beasley, Tetrahedron 29, 2231 (1973).
- [13] H. Heimgartner, L. Ulrich, H.-J. Hansen & H. Schmid, Helv. 54, 2313 (1971).
- [14] H. M. Frey & B. M. Pope, J. chem. Soc. (A) 1966, 1701.
- [15] H. Heimgartner, J. Zsindely, H.-J. Hansen & H. Schmid, Helv. 56, 2924 (1973).
- [16] H.-D. Beckhaus, Dissertation, Universität Freiburg i. Br. 1975; H.-D. Beckhaus & Ch. Rüchardt, Chem. Ber. 110, 878 (1977).
- [17] L. Ruzicka & E. Peyer, Helv. 18, 676 (1935).
- [18] R. B. Cundall & T. F. Palmer, Trans. Faraday Soc. 57, 1936 (1961); B. S. Rabinovitch & K.-W. Michel, J. Amer. chem. Soc. 81, 5065 (1959); D. Masson, C. Richard & R. Martin, Int. J. chem. Kinet. 8, 37 (1976).
- [19] J. N. Butler & R. D. McAlpine, Canad. J. Chemistry 41, 2487 (1963).
- [20] S. W. Benson, 'Thermochemical Kinetics', J. Wiley & Sons, Inc., New York 1968, S. 73.
- [21] J. N. Butler & G. J. Small, Canad. J. Chemistry 41, 2492 (1963).
- [22] G. B. Kistiakowsky & W. R. Smith, J. Amer. chem. Soc. 56, 638 (1934).
- [23] R. Wehrli, D. Belluš, H.-J. Hansen & H. Schmid, Chimia 30, 416 (1976); iidem, Helv. 60, 1325 (1977).

- [24] J. D. Roberts, A. Streitwieser & C. M. Regan, J. Amer. chem. Soc. 74, 4579 (1952); M. P. Cava & A. A. Deana, ibid. 81, 4266 (1959); C. R. Flynn & J. Michl, ibid. 96, 3280 (1974); E. Migirdicyan & J. Baudet, ibid. 97, 7400 (1975).
- [25] W. Sieber, H. Heimgartner, H.-J. Hansen & H. Schmid, Helv. 55, 3005 (1972); U. Widmer, H. Heimgartner & H. Schmid, ibid. 58, 2210 (1975).
- [26] F. R. Jensen, W. E. Coleman & A. J. Berlin, Tetrahedron Letters 1962, 15; F. Scully & H. Morrison, Chem. Commun. 1973, 529; B. J. Arnold, P. G. Sammes & T. W. Wallace, J. chem. Soc. Perkin I 1974, 415.
- [27] J. J. Mc Cullough & A. J. Yarwood, Chem. Commun. 1975, 485.
- [28] A. S. Gordon & J. R. McNesby, J. chem. Physics 31, 853 (1959); iidem, ibid. 33, 1882 (1960);
 E. A. Hardwidge, C. W. Larson & B. S. Rabinovitch, J. Amer. chem. Soc. 92, 3278 (1970);
 A. D. Clements & H. M. Frey, J. chem. Soc. Faraday I 1976, 1637.
- [29] H. Pines, N. C. Sih & D. B. Rosenfield, J. org. Chemistry 31, 2255 (1966).
- [30] M. Julia, Accounts chem. Res. 4, 386 (1971).
- [31] M. Julia, C. Descoins, M. Baillarge, B. Jacquet, D. Uguen & F. A. Groeger, Tetrahedron 31, 1737 (1975).
- [32] H. Heimgartner, J. Zsindely, H.-J. Hansen & H. Schmid, Helv. 53, 1212 (1970).
- [33] C. W. Spangler, Chem. Rev. 76, 187 (1976).
- [34] H. Heimgartner, H.-J. Hansen & H. Schmid, Helv. 53, 173 (1970).
- [35] R. Wehrli, Diplomarbeit, Universität Zürich 1972.
- [36] R. Hug, H.-J. Hansen & H. Schmid, Helv. 55, 1828 (1972).
- [37] K. Grob, Helv. 48, 1362 (1965); idem, ibid. 51, 718 (1968).
- [38] A. Habich, R. Barner, W. von Philipsborn & H. Schmid, Helv. 48, 1297 (1965); G. Fráter & H. Schmid, ibid. 49, 1957 (1966).
- [39] H. Greuter & H. Schmid, Helv. 57, 281 (1974).
- [40] S. Cabiddu, G. Gelli & V. Solinas, Ann. Chim. (Rome) 58, 845 (1968).
- [41] A. Rieche, H. Gross & E. Hoeft, Org. Synth. 47, 1 (1967).
- [42] G. Wittig & U. Schoellkopf, Org. Synth. 40, 66 (1960).
- [43] G. Wittig & U. Schoellkopf, Chem. Ber. 87, 1318 (1954).
- [44] C. Bocard, M. Davidson, M. Hellin & F. Coussemant, Tetrahedron Letters 1969, 491; A-R. O. Abdel Nour & M. Hassan, J. chem. Soc. (B) 1970, 1628; C. Bocard, M. Davidson, M. Hellin & F. Coussemant, Bull. Soc. chim. France 1971, 163, 490, 877; vgl. auch [40].
- [45] R. Wehrli, Dissertation, Universität Zürich 1977.
- [46] C. R. Hauser & D. S. Breslow, Org. Synth. Coll. Vol. 3, 408 (1955).
- [47] S. G. Cohen & A. Schneider, J. Amer. chem. Soc. 63, 3382 (1941).
- [48] Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, S. 489.